Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382632170> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4382632170 abstract "Depression is a prevalent mental condition that is challenging to diagnose using conventional techniques. Using machine learning and deep learning models with motor activity data, wearable AI technology has shown promise in reliably and effectively identifying or predicting depression. In this work, we aim to examine the performance of simple linear and non-linear models in the prediction of depression levels. We compared eight linear and non-linear models (Ridge, ElasticNet, Lasso, Random Forest, Gradient boosting, Decision trees, Support vector machines, and Multilayer perceptron) for the task of predicting depression scores over a period using physiological features, motor activity data, and MADRAS scores. For the experimental evaluation, we used the Depresjon dataset which contains the motor activity data of depressed and non-depressed participants. According to our findings, simple linear and non-linear models may effectively estimate depression scores for depressed people without the need for complex models. This opens the door for the development of more effective and impartial techniques for identifying depression and treating/preventing it using commonly used, widely accessible wearable technology." @default.
- W4382632170 created "2023-07-01" @default.
- W4382632170 creator A5001592898 @default.
- W4382632170 creator A5020810020 @default.
- W4382632170 creator A5028735623 @default.
- W4382632170 creator A5045843215 @default.
- W4382632170 creator A5056435145 @default.
- W4382632170 date "2023-06-29" @default.
- W4382632170 modified "2023-10-14" @default.
- W4382632170 title "Performance of Artificial Intelligence in Predicting Future Depression Levels" @default.
- W4382632170 doi "https://doi.org/10.3233/shti230529" @default.
- W4382632170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37387063" @default.
- W4382632170 hasPublicationYear "2023" @default.
- W4382632170 type Work @default.
- W4382632170 citedByCount "0" @default.
- W4382632170 crossrefType "book-chapter" @default.
- W4382632170 hasAuthorship W4382632170A5001592898 @default.
- W4382632170 hasAuthorship W4382632170A5020810020 @default.
- W4382632170 hasAuthorship W4382632170A5028735623 @default.
- W4382632170 hasAuthorship W4382632170A5045843215 @default.
- W4382632170 hasAuthorship W4382632170A5056435145 @default.
- W4382632170 hasBestOaLocation W43826321701 @default.
- W4382632170 hasConcept C119857082 @default.
- W4382632170 hasConcept C12267149 @default.
- W4382632170 hasConcept C139719470 @default.
- W4382632170 hasConcept C149635348 @default.
- W4382632170 hasConcept C150594956 @default.
- W4382632170 hasConcept C154945302 @default.
- W4382632170 hasConcept C162324750 @default.
- W4382632170 hasConcept C163175372 @default.
- W4382632170 hasConcept C169258074 @default.
- W4382632170 hasConcept C179717631 @default.
- W4382632170 hasConcept C2776867660 @default.
- W4382632170 hasConcept C41008148 @default.
- W4382632170 hasConcept C50644808 @default.
- W4382632170 hasConcept C70153297 @default.
- W4382632170 hasConcept C84525736 @default.
- W4382632170 hasConceptScore W4382632170C119857082 @default.
- W4382632170 hasConceptScore W4382632170C12267149 @default.
- W4382632170 hasConceptScore W4382632170C139719470 @default.
- W4382632170 hasConceptScore W4382632170C149635348 @default.
- W4382632170 hasConceptScore W4382632170C150594956 @default.
- W4382632170 hasConceptScore W4382632170C154945302 @default.
- W4382632170 hasConceptScore W4382632170C162324750 @default.
- W4382632170 hasConceptScore W4382632170C163175372 @default.
- W4382632170 hasConceptScore W4382632170C169258074 @default.
- W4382632170 hasConceptScore W4382632170C179717631 @default.
- W4382632170 hasConceptScore W4382632170C2776867660 @default.
- W4382632170 hasConceptScore W4382632170C41008148 @default.
- W4382632170 hasConceptScore W4382632170C50644808 @default.
- W4382632170 hasConceptScore W4382632170C70153297 @default.
- W4382632170 hasConceptScore W4382632170C84525736 @default.
- W4382632170 hasLocation W43826321701 @default.
- W4382632170 hasLocation W43826321702 @default.
- W4382632170 hasOpenAccess W4382632170 @default.
- W4382632170 hasPrimaryLocation W43826321701 @default.
- W4382632170 hasRelatedWork W3195168932 @default.
- W4382632170 hasRelatedWork W4283071960 @default.
- W4382632170 hasRelatedWork W4296421823 @default.
- W4382632170 hasRelatedWork W4308191010 @default.
- W4382632170 hasRelatedWork W4309638318 @default.
- W4382632170 hasRelatedWork W4321636153 @default.
- W4382632170 hasRelatedWork W4361795583 @default.
- W4382632170 hasRelatedWork W4377964522 @default.
- W4382632170 hasRelatedWork W4386072274 @default.
- W4382632170 hasRelatedWork W4386123260 @default.
- W4382632170 isParatext "false" @default.
- W4382632170 isRetracted "false" @default.
- W4382632170 workType "book-chapter" @default.