Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382632277> ?p ?o ?g. }
- W4382632277 abstract "Abstract Introduction Neonatal sepsis is a major cause of health loss and mortality worldwide. Without proper treatment, neonatal sepsis can quickly develop into multisystem organ failure. However, the signs of neonatal sepsis are non-specific, and treatment is labour-intensive and expensive. Moreover, antimicrobial resistance is a significant threat globally, and it has been reported that over 70% of neonatal bloodstream infections are resistant to first-line antibiotic treatment. Machine learning is a potential tool to aid clinicians in diagnosing infections and in determining the most appropriate empiric antibiotic treatment, as has been demonstrated for adult populations. This review aimed to present the application of machine learning on neonatal sepsis treatment. Methods PubMed, Embase, and Scopus were searched for studies published in English focusing on neonatal sepsis, antibiotics, and machine learning. Results There were 18 studies included in this scoping review. Three studies focused on using machine learning in antibiotic treatment for bloodstream infections, one focused on predicting in-hospital mortality associated with neonatal sepsis, and the remaining studies focused on developing machine learning prediction models to diagnose possible sepsis cases. Gestational age, C-reactive protein levels, and white blood cell count were important predictors to diagnose neonatal sepsis. Age, weight, and days from hospital admission to blood sample taken were important to predict antibiotic-resistant infections. The best-performing machine learning models were random forest and neural networks. Conclusion Despite the threat antimicrobial resistance poses, there was a lack of studies focusing on the use of machine learning for aiding empirical antibiotic treatment for neonatal sepsis." @default.
- W4382632277 created "2023-07-01" @default.
- W4382632277 creator A5001923755 @default.
- W4382632277 creator A5012482178 @default.
- W4382632277 creator A5031668620 @default.
- W4382632277 creator A5034237911 @default.
- W4382632277 creator A5035868819 @default.
- W4382632277 creator A5058742666 @default.
- W4382632277 creator A5083857830 @default.
- W4382632277 date "2023-06-29" @default.
- W4382632277 modified "2023-10-10" @default.
- W4382632277 title "Machine learning applications on neonatal sepsis treatment: a scoping review" @default.
- W4382632277 cites W1538455569 @default.
- W4382632277 cites W1866881459 @default.
- W4382632277 cites W1943063538 @default.
- W4382632277 cites W1982829321 @default.
- W4382632277 cites W198800626 @default.
- W4382632277 cites W1988629557 @default.
- W4382632277 cites W2014080210 @default.
- W4382632277 cites W2019694480 @default.
- W4382632277 cites W2034689607 @default.
- W4382632277 cites W2088472932 @default.
- W4382632277 cites W2097663753 @default.
- W4382632277 cites W2102478091 @default.
- W4382632277 cites W2145538049 @default.
- W4382632277 cites W2146996430 @default.
- W4382632277 cites W2158264979 @default.
- W4382632277 cites W2168581177 @default.
- W4382632277 cites W2342603028 @default.
- W4382632277 cites W2487770199 @default.
- W4382632277 cites W2522277204 @default.
- W4382632277 cites W2549697535 @default.
- W4382632277 cites W2727650337 @default.
- W4382632277 cites W2750268731 @default.
- W4382632277 cites W2788388954 @default.
- W4382632277 cites W2883457117 @default.
- W4382632277 cites W2884583872 @default.
- W4382632277 cites W2893693469 @default.
- W4382632277 cites W2911964244 @default.
- W4382632277 cites W2915312288 @default.
- W4382632277 cites W2922082445 @default.
- W4382632277 cites W2953237661 @default.
- W4382632277 cites W2956091366 @default.
- W4382632277 cites W2968185676 @default.
- W4382632277 cites W3004251550 @default.
- W4382632277 cites W3032257273 @default.
- W4382632277 cites W3081508779 @default.
- W4382632277 cites W3125024173 @default.
- W4382632277 cites W3133117307 @default.
- W4382632277 cites W3157942681 @default.
- W4382632277 cites W3163042872 @default.
- W4382632277 cites W3166011525 @default.
- W4382632277 cites W3169176269 @default.
- W4382632277 cites W3180959755 @default.
- W4382632277 cites W3183837412 @default.
- W4382632277 cites W3197063311 @default.
- W4382632277 cites W3201243030 @default.
- W4382632277 cites W3206214356 @default.
- W4382632277 cites W3207434859 @default.
- W4382632277 cites W4226306038 @default.
- W4382632277 cites W4229070714 @default.
- W4382632277 cites W4239510810 @default.
- W4382632277 cites W4286264110 @default.
- W4382632277 cites W4286375500 @default.
- W4382632277 cites W4286587856 @default.
- W4382632277 cites W4302305243 @default.
- W4382632277 doi "https://doi.org/10.1186/s12879-023-08409-3" @default.
- W4382632277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37386442" @default.
- W4382632277 hasPublicationYear "2023" @default.
- W4382632277 type Work @default.
- W4382632277 citedByCount "0" @default.
- W4382632277 crossrefType "journal-article" @default.
- W4382632277 hasAuthorship W4382632277A5001923755 @default.
- W4382632277 hasAuthorship W4382632277A5012482178 @default.
- W4382632277 hasAuthorship W4382632277A5031668620 @default.
- W4382632277 hasAuthorship W4382632277A5034237911 @default.
- W4382632277 hasAuthorship W4382632277A5035868819 @default.
- W4382632277 hasAuthorship W4382632277A5058742666 @default.
- W4382632277 hasAuthorship W4382632277A5083857830 @default.
- W4382632277 hasBestOaLocation W43826322771 @default.
- W4382632277 hasConcept C119857082 @default.
- W4382632277 hasConcept C126322002 @default.
- W4382632277 hasConcept C177713679 @default.
- W4382632277 hasConcept C190139176 @default.
- W4382632277 hasConcept C203014093 @default.
- W4382632277 hasConcept C2775953899 @default.
- W4382632277 hasConcept C2778384902 @default.
- W4382632277 hasConcept C2779473907 @default.
- W4382632277 hasConcept C41008148 @default.
- W4382632277 hasConcept C501593827 @default.
- W4382632277 hasConcept C71924100 @default.
- W4382632277 hasConcept C86803240 @default.
- W4382632277 hasConcept C89423630 @default.
- W4382632277 hasConcept C94665300 @default.
- W4382632277 hasConceptScore W4382632277C119857082 @default.
- W4382632277 hasConceptScore W4382632277C126322002 @default.
- W4382632277 hasConceptScore W4382632277C177713679 @default.
- W4382632277 hasConceptScore W4382632277C190139176 @default.
- W4382632277 hasConceptScore W4382632277C203014093 @default.
- W4382632277 hasConceptScore W4382632277C2775953899 @default.