Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382644382> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4382644382 abstract "Given the importance of online retailers in the market, forecasting sales has become one of the essential market strategic considerations. Modern Machine Learning tools help in forecasting sales for many online retailers. These models need refinement and automatization to increase efficiency and productivity. Suppose an automated function can be applied to capture historical data and execute forecasting models automatically; it will reduce the time and human resources for the company to manage the forecasting system. An automated data processing and forecasting model system offers the marketing department more flexible market sales forecasting. Proposed here is an automated weekly periodic sales forecasting system that integrates: the Extract-Transform-Load (ETL) data processing process and machine learning forecasting model and sends the outcomes as messages. For this study, the data is obtained for an online women's shoe retailer from three data sources (AWS Redshift, AWS S3, and Google Sheets). The system collects the sales data for 120 weeks, then passes it to an ETL process, and runs the machine learning forecasting model to forecast the sales of the retailer's products in the next week. The machine learning model is built using the random forest regressor. The top 25 products with the most popular forecasting results are selected and sent to the owner’s email for further market evaluation. The system is built as a Directed Acyclic Graph (DAG) using Python script on Apache Airflow. To facilitate the management of the system, the authors set up Apache Airflow in a Docker container. The whole process does not require human monitoring and management. If the project is executed on Airflow, it will notify the project owner to inspect the cause of any potential error." @default.
- W4382644382 created "2023-07-01" @default.
- W4382644382 creator A5001331666 @default.
- W4382644382 creator A5004279740 @default.
- W4382644382 creator A5026262000 @default.
- W4382644382 creator A5028357047 @default.
- W4382644382 date "2023-01-01" @default.
- W4382644382 modified "2023-09-29" @default.
- W4382644382 title "ETL and ML Forecasting Modeling Process Automation System" @default.
- W4382644382 doi "https://doi.org/10.54941/ahfe1003775" @default.
- W4382644382 hasPublicationYear "2023" @default.
- W4382644382 type Work @default.
- W4382644382 citedByCount "0" @default.
- W4382644382 crossrefType "proceedings-article" @default.
- W4382644382 hasAuthorship W4382644382A5001331666 @default.
- W4382644382 hasAuthorship W4382644382A5004279740 @default.
- W4382644382 hasAuthorship W4382644382A5026262000 @default.
- W4382644382 hasAuthorship W4382644382A5028357047 @default.
- W4382644382 hasConcept C111919701 @default.
- W4382644382 hasConcept C115901376 @default.
- W4382644382 hasConcept C119857082 @default.
- W4382644382 hasConcept C127413603 @default.
- W4382644382 hasConcept C139749660 @default.
- W4382644382 hasConcept C144133560 @default.
- W4382644382 hasConcept C154945302 @default.
- W4382644382 hasConcept C16051113 @default.
- W4382644382 hasConcept C162853370 @default.
- W4382644382 hasConcept C2984642479 @default.
- W4382644382 hasConcept C41008148 @default.
- W4382644382 hasConcept C42475967 @default.
- W4382644382 hasConcept C519991488 @default.
- W4382644382 hasConcept C78519656 @default.
- W4382644382 hasConcept C98045186 @default.
- W4382644382 hasConceptScore W4382644382C111919701 @default.
- W4382644382 hasConceptScore W4382644382C115901376 @default.
- W4382644382 hasConceptScore W4382644382C119857082 @default.
- W4382644382 hasConceptScore W4382644382C127413603 @default.
- W4382644382 hasConceptScore W4382644382C139749660 @default.
- W4382644382 hasConceptScore W4382644382C144133560 @default.
- W4382644382 hasConceptScore W4382644382C154945302 @default.
- W4382644382 hasConceptScore W4382644382C16051113 @default.
- W4382644382 hasConceptScore W4382644382C162853370 @default.
- W4382644382 hasConceptScore W4382644382C2984642479 @default.
- W4382644382 hasConceptScore W4382644382C41008148 @default.
- W4382644382 hasConceptScore W4382644382C42475967 @default.
- W4382644382 hasConceptScore W4382644382C519991488 @default.
- W4382644382 hasConceptScore W4382644382C78519656 @default.
- W4382644382 hasConceptScore W4382644382C98045186 @default.
- W4382644382 hasLocation W43826443821 @default.
- W4382644382 hasOpenAccess W4382644382 @default.
- W4382644382 hasPrimaryLocation W43826443821 @default.
- W4382644382 hasRelatedWork W1967876261 @default.
- W4382644382 hasRelatedWork W2891993883 @default.
- W4382644382 hasRelatedWork W2979801952 @default.
- W4382644382 hasRelatedWork W3162257929 @default.
- W4382644382 hasRelatedWork W4285815787 @default.
- W4382644382 hasRelatedWork W4312949351 @default.
- W4382644382 hasRelatedWork W4375866372 @default.
- W4382644382 hasRelatedWork W4377970454 @default.
- W4382644382 hasRelatedWork W4383747227 @default.
- W4382644382 hasRelatedWork W2991644856 @default.
- W4382644382 isParatext "false" @default.
- W4382644382 isRetracted "false" @default.
- W4382644382 workType "article" @default.