Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382644443> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4382644443 abstract "Expert team decision-making demonstrates that effective teams have shared goals, shared mental models to coordinate with minimal communication, establish trust through cross-training, and match task structures through planning. The key questions: Do best practices of human teams translate to hybrid human-AI agent teams, or autonomous agents alone? Is there a mathematical framework for studying shared goals and mental models? We propose factor graphs for studying multi-agent interaction and agile cooperative planning. One promising avenue for modeling interacting agents in real environments is with stochastic approaches, where probability distributions describe uncertainties and imperfect observations. Stochastic dynamic programming provides a framework for modeling multiple agents as scheduled and interacting Markov Decision Processes (MDPs), wherein each agent has partial information about other agents in the team. Each agent acts by accounting for both its objectives and anticipated behaviors of others, even implicitly. We have shown that Dynamic Programming, Maximum likelihood, Maximum entropy and Free-energy-based methods for stochastic control are special cases of probabilistic message propagation rules on modeled factor graphs. Now we show how multiple agents, modeled as multiple interacting factor graphs, exchange probability distributions carrying partial mutual knowledge. We demonstrate the ideas in contexts of moving agents on a discrete grid with obstacles and pre-defined semantic areas (grassy areas, pathways), where each subject has a different destination (goal). The scheduling of agents is fixed a priori or changes over time, and the forward-backward flow for each agent’s MDP is computed every time step, with additional branches that inject probability distributions into and from other agent MDPs. These interactions avoid collisions among agents and enable dynamic planning by agents, accounting for estimates of posterior probabilities of other agents states at future times, the precision and timing being adjustable. Simulations included limited interacting agents (three) on small rectangular discrete grid with starting points and destination goals, obstacles in various positions, narrow passages, small mazes, destinations that require coordination, etc. Solely due to probability distributions flowing in the interacting agent system, the solutions provided by the probabilistic model are interesting because agents that encounter potential conflicts in some regions autonomously adapt strategies, like waiting to let others pass, or taking different paths. The information available to each agent is a combination of rewards received from the environment and inferences about other agents. Previously, we described a scheme for a hierarchy (prioritized order) of agents and unique value function for each agent. Now, we propose a different, tunable interaction, wherein each agent dynamically transmits the posterior probability of its position at future time steps to other agents. The new framework allows flexibility in tuning the information that each agent has on others, ranging from complete knowledge of goals and positions about others out to a limited probabilistic awareness, both in precision and in time, for where others may be located at future time steps. This framework systematically addresses questions, such as the minimal amount of information needed for effective team coordination in the face of changes in goals, communication bandwidth, grid parameters and agent status." @default.
- W4382644443 created "2023-07-01" @default.
- W4382644443 creator A5019933558 @default.
- W4382644443 creator A5026870973 @default.
- W4382644443 creator A5082001657 @default.
- W4382644443 creator A5082596053 @default.
- W4382644443 creator A5089169714 @default.
- W4382644443 date "2023-01-01" @default.
- W4382644443 modified "2023-09-23" @default.
- W4382644443 title "Multiple Agents Interacting via Probability Flows on Factor Graphs" @default.
- W4382644443 doi "https://doi.org/10.54941/ahfe1003761" @default.
- W4382644443 hasPublicationYear "2023" @default.
- W4382644443 type Work @default.
- W4382644443 citedByCount "0" @default.
- W4382644443 crossrefType "proceedings-article" @default.
- W4382644443 hasAuthorship W4382644443A5019933558 @default.
- W4382644443 hasAuthorship W4382644443A5026870973 @default.
- W4382644443 hasAuthorship W4382644443A5082001657 @default.
- W4382644443 hasAuthorship W4382644443A5082596053 @default.
- W4382644443 hasAuthorship W4382644443A5089169714 @default.
- W4382644443 hasConcept C105795698 @default.
- W4382644443 hasConcept C106189395 @default.
- W4382644443 hasConcept C119857082 @default.
- W4382644443 hasConcept C126255220 @default.
- W4382644443 hasConcept C138885662 @default.
- W4382644443 hasConcept C154945302 @default.
- W4382644443 hasConcept C159886148 @default.
- W4382644443 hasConcept C206729178 @default.
- W4382644443 hasConcept C2780310539 @default.
- W4382644443 hasConcept C33923547 @default.
- W4382644443 hasConcept C41008148 @default.
- W4382644443 hasConcept C41895202 @default.
- W4382644443 hasConcept C49937458 @default.
- W4382644443 hasConcept C80444323 @default.
- W4382644443 hasConcept C98763669 @default.
- W4382644443 hasConceptScore W4382644443C105795698 @default.
- W4382644443 hasConceptScore W4382644443C106189395 @default.
- W4382644443 hasConceptScore W4382644443C119857082 @default.
- W4382644443 hasConceptScore W4382644443C126255220 @default.
- W4382644443 hasConceptScore W4382644443C138885662 @default.
- W4382644443 hasConceptScore W4382644443C154945302 @default.
- W4382644443 hasConceptScore W4382644443C159886148 @default.
- W4382644443 hasConceptScore W4382644443C206729178 @default.
- W4382644443 hasConceptScore W4382644443C2780310539 @default.
- W4382644443 hasConceptScore W4382644443C33923547 @default.
- W4382644443 hasConceptScore W4382644443C41008148 @default.
- W4382644443 hasConceptScore W4382644443C41895202 @default.
- W4382644443 hasConceptScore W4382644443C49937458 @default.
- W4382644443 hasConceptScore W4382644443C80444323 @default.
- W4382644443 hasConceptScore W4382644443C98763669 @default.
- W4382644443 hasLocation W43826444431 @default.
- W4382644443 hasOpenAccess W4382644443 @default.
- W4382644443 hasPrimaryLocation W43826444431 @default.
- W4382644443 hasRelatedWork W1492158240 @default.
- W4382644443 hasRelatedWork W1497573972 @default.
- W4382644443 hasRelatedWork W1511524986 @default.
- W4382644443 hasRelatedWork W1762969849 @default.
- W4382644443 hasRelatedWork W2152221608 @default.
- W4382644443 hasRelatedWork W2544192463 @default.
- W4382644443 hasRelatedWork W3099114572 @default.
- W4382644443 hasRelatedWork W3140738360 @default.
- W4382644443 hasRelatedWork W3198596521 @default.
- W4382644443 hasRelatedWork W2793281072 @default.
- W4382644443 isParatext "false" @default.
- W4382644443 isRetracted "false" @default.
- W4382644443 workType "article" @default.