Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382653722> ?p ?o ?g. }
- W4382653722 endingPage "25164" @default.
- W4382653722 startingPage "25155" @default.
- W4382653722 abstract "Formation and growth of atmospheric molecular clusters into aerosol particles impact the global climate and contribute to the high uncertainty in modern climate models. Cluster formation is usually studied using quantum chemical methods, which quickly becomes computationally expensive when system sizes grow. In this work, we present a large database of ∼250k atmospheric relevant cluster structures, which can be applied for developing machine learning (ML) models. The database is used to train the ML model kernel ridge regression (KRR) with the FCHL19 representation. We test the ability of the model to extrapolate from smaller clusters to larger clusters, between different molecules, between equilibrium structures and out-of-equilibrium structures, and the transferability onto systems with new interactions. We show that KRR models can extrapolate to larger sizes and transfer acid and base interactions with mean absolute errors below 1 kcal/mol. We suggest introducing an iterative ML step in configurational sampling processes, which can reduce the computational expense. Such an approach would allow us to study significantly more cluster systems at higher accuracy than previously possible and thereby allow us to cover a much larger part of relevant atmospheric compounds." @default.
- W4382653722 created "2023-07-01" @default.
- W4382653722 creator A5014957190 @default.
- W4382653722 creator A5019033081 @default.
- W4382653722 creator A5023160980 @default.
- W4382653722 creator A5074276899 @default.
- W4382653722 date "2023-06-30" @default.
- W4382653722 modified "2023-09-26" @default.
- W4382653722 title "Clusterome: A Comprehensive Data Set of Atmospheric Molecular Clusters for Machine Learning Applications" @default.
- W4382653722 cites W1500505166 @default.
- W4382653722 cites W1906829895 @default.
- W4382653722 cites W1964588882 @default.
- W4382653722 cites W1971044734 @default.
- W4382653722 cites W1995109133 @default.
- W4382653722 cites W2002039008 @default.
- W4382653722 cites W2011254556 @default.
- W4382653722 cites W2067718414 @default.
- W4382653722 cites W2070804679 @default.
- W4382653722 cites W2077973224 @default.
- W4382653722 cites W2085066235 @default.
- W4382653722 cites W2091700437 @default.
- W4382653722 cites W2108582364 @default.
- W4382653722 cites W2118289023 @default.
- W4382653722 cites W2127722963 @default.
- W4382653722 cites W2132869159 @default.
- W4382653722 cites W2155287037 @default.
- W4382653722 cites W2155358697 @default.
- W4382653722 cites W2299048766 @default.
- W4382653722 cites W2344749069 @default.
- W4382653722 cites W2402991992 @default.
- W4382653722 cites W2527189750 @default.
- W4382653722 cites W2541404351 @default.
- W4382653722 cites W2605801743 @default.
- W4382653722 cites W2736434471 @default.
- W4382653722 cites W2800168263 @default.
- W4382653722 cites W2911997094 @default.
- W4382653722 cites W2953794233 @default.
- W4382653722 cites W3003486042 @default.
- W4382653722 cites W3022256936 @default.
- W4382653722 cites W3033961954 @default.
- W4382653722 cites W3034390843 @default.
- W4382653722 cites W3040221488 @default.
- W4382653722 cites W3098321015 @default.
- W4382653722 cites W3113213631 @default.
- W4382653722 cites W3115387359 @default.
- W4382653722 cites W3129018228 @default.
- W4382653722 cites W3137204688 @default.
- W4382653722 cites W3175182709 @default.
- W4382653722 cites W3204143945 @default.
- W4382653722 cites W3212953701 @default.
- W4382653722 cites W4210248900 @default.
- W4382653722 cites W4211049957 @default.
- W4382653722 cites W4220694746 @default.
- W4382653722 cites W4229010974 @default.
- W4382653722 cites W4236270162 @default.
- W4382653722 cites W4292553170 @default.
- W4382653722 cites W4292773998 @default.
- W4382653722 cites W4293257826 @default.
- W4382653722 cites W4309809272 @default.
- W4382653722 cites W4321491638 @default.
- W4382653722 cites W4322623869 @default.
- W4382653722 cites W4382057797 @default.
- W4382653722 doi "https://doi.org/10.1021/acsomega.3c02203" @default.
- W4382653722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37483242" @default.
- W4382653722 hasPublicationYear "2023" @default.
- W4382653722 type Work @default.
- W4382653722 citedByCount "0" @default.
- W4382653722 crossrefType "journal-article" @default.
- W4382653722 hasAuthorship W4382653722A5014957190 @default.
- W4382653722 hasAuthorship W4382653722A5019033081 @default.
- W4382653722 hasAuthorship W4382653722A5023160980 @default.
- W4382653722 hasAuthorship W4382653722A5074276899 @default.
- W4382653722 hasBestOaLocation W43826537221 @default.
- W4382653722 hasConcept C114614502 @default.
- W4382653722 hasConcept C151730666 @default.
- W4382653722 hasConcept C164866538 @default.
- W4382653722 hasConcept C177264268 @default.
- W4382653722 hasConcept C17744445 @default.
- W4382653722 hasConcept C199360897 @default.
- W4382653722 hasConcept C199539241 @default.
- W4382653722 hasConcept C2776359362 @default.
- W4382653722 hasConcept C32277403 @default.
- W4382653722 hasConcept C33923547 @default.
- W4382653722 hasConcept C41008148 @default.
- W4382653722 hasConcept C74193536 @default.
- W4382653722 hasConcept C86803240 @default.
- W4382653722 hasConcept C94625758 @default.
- W4382653722 hasConceptScore W4382653722C114614502 @default.
- W4382653722 hasConceptScore W4382653722C151730666 @default.
- W4382653722 hasConceptScore W4382653722C164866538 @default.
- W4382653722 hasConceptScore W4382653722C177264268 @default.
- W4382653722 hasConceptScore W4382653722C17744445 @default.
- W4382653722 hasConceptScore W4382653722C199360897 @default.
- W4382653722 hasConceptScore W4382653722C199539241 @default.
- W4382653722 hasConceptScore W4382653722C2776359362 @default.
- W4382653722 hasConceptScore W4382653722C32277403 @default.
- W4382653722 hasConceptScore W4382653722C33923547 @default.
- W4382653722 hasConceptScore W4382653722C41008148 @default.