Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382654777> ?p ?o ?g. }
- W4382654777 endingPage "S198" @default.
- W4382654777 startingPage "S185" @default.
- W4382654777 abstract "Rationale and Objectives To establish a prediction model for the efficacy of neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC), using pretreatment magnetic resonance imaging (MRI) multisequence image features and clinical parameters. Materials and Methods Patients with clinicopathologically confirmed LARC were included (training and validation datasets, n = 100 and 27, respectively). Clinical data of patients were collected retrospectively. We analyzed MRI multisequence imaging features. The tumor regression grading (TRG) system proposed by Mandard et al was adopted. Grade 1-2 of TRG was a good response group, and grade 3-5 of TRG was a poor response group. In this study, a clinical model, a single sequence imaging model, and a comprehensive model combined with clinical imaging were constructed, respectively. The area under the subject operating characteristic curve (AUC) was used to evaluate the predictive efficacy of clinical, imaging, and comprehensive models. The decision curve analysis method evaluated the clinical benefit of several models, and the nomogram of efficacy prediction was constructed. Results The AUC value of the comprehensive prediction model is 0.99 in the training data set and 0.94 in the test data set, which is significantly higher than other models. Radiomic Nomo charts were developed using Rad scores obtained from the integrated image omics model, circumferential resection margin(CRM), DoTD, and carcinoembryonic antigen(CEA). Nomo charts showed good resolution. The calibrating and discriminating ability of the synthetic prediction model is better than that of the single clinical model and the single sequence clinical image omics fusion model. Conclusion Nomograph, based on pretreatment MRI characteristics and clinical risk factors, has the potential to be used as a noninvasive tool to predict outcomes in patients with LARC after nCRT. To establish a prediction model for the efficacy of neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC), using pretreatment magnetic resonance imaging (MRI) multisequence image features and clinical parameters. Patients with clinicopathologically confirmed LARC were included (training and validation datasets, n = 100 and 27, respectively). Clinical data of patients were collected retrospectively. We analyzed MRI multisequence imaging features. The tumor regression grading (TRG) system proposed by Mandard et al was adopted. Grade 1-2 of TRG was a good response group, and grade 3-5 of TRG was a poor response group. In this study, a clinical model, a single sequence imaging model, and a comprehensive model combined with clinical imaging were constructed, respectively. The area under the subject operating characteristic curve (AUC) was used to evaluate the predictive efficacy of clinical, imaging, and comprehensive models. The decision curve analysis method evaluated the clinical benefit of several models, and the nomogram of efficacy prediction was constructed. The AUC value of the comprehensive prediction model is 0.99 in the training data set and 0.94 in the test data set, which is significantly higher than other models. Radiomic Nomo charts were developed using Rad scores obtained from the integrated image omics model, circumferential resection margin(CRM), DoTD, and carcinoembryonic antigen(CEA). Nomo charts showed good resolution. The calibrating and discriminating ability of the synthetic prediction model is better than that of the single clinical model and the single sequence clinical image omics fusion model. Nomograph, based on pretreatment MRI characteristics and clinical risk factors, has the potential to be used as a noninvasive tool to predict outcomes in patients with LARC after nCRT." @default.
- W4382654777 created "2023-07-01" @default.
- W4382654777 creator A5001998362 @default.
- W4382654777 creator A5013087704 @default.
- W4382654777 creator A5031133119 @default.
- W4382654777 creator A5032278821 @default.
- W4382654777 creator A5038305059 @default.
- W4382654777 creator A5043582832 @default.
- W4382654777 creator A5044116060 @default.
- W4382654777 creator A5048205844 @default.
- W4382654777 creator A5075745387 @default.
- W4382654777 creator A5076655622 @default.
- W4382654777 creator A5085594231 @default.
- W4382654777 creator A5087588065 @default.
- W4382654777 date "2023-09-01" @default.
- W4382654777 modified "2023-10-11" @default.
- W4382654777 title "A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer" @default.
- W4382654777 cites W1608765976 @default.
- W4382654777 cites W1977468182 @default.
- W4382654777 cites W2007296899 @default.
- W4382654777 cites W2014274213 @default.
- W4382654777 cites W2044427013 @default.
- W4382654777 cites W2046829339 @default.
- W4382654777 cites W2112693548 @default.
- W4382654777 cites W2117490822 @default.
- W4382654777 cites W2131558262 @default.
- W4382654777 cites W2144717403 @default.
- W4382654777 cites W2157631035 @default.
- W4382654777 cites W2207554953 @default.
- W4382654777 cites W2294873330 @default.
- W4382654777 cites W2313463556 @default.
- W4382654777 cites W2350997045 @default.
- W4382654777 cites W2418075900 @default.
- W4382654777 cites W2502437922 @default.
- W4382654777 cites W2579461137 @default.
- W4382654777 cites W2593170853 @default.
- W4382654777 cites W2729961985 @default.
- W4382654777 cites W2760796828 @default.
- W4382654777 cites W2793785683 @default.
- W4382654777 cites W2801589513 @default.
- W4382654777 cites W2807289222 @default.
- W4382654777 cites W2854529957 @default.
- W4382654777 cites W2890467361 @default.
- W4382654777 cites W2905521034 @default.
- W4382654777 cites W2912827532 @default.
- W4382654777 cites W2921105198 @default.
- W4382654777 cites W2921520311 @default.
- W4382654777 cites W2944203898 @default.
- W4382654777 cites W2945052290 @default.
- W4382654777 cites W2949580936 @default.
- W4382654777 cites W2981662953 @default.
- W4382654777 cites W3032976015 @default.
- W4382654777 cites W3045259210 @default.
- W4382654777 cites W3082982131 @default.
- W4382654777 cites W3111631690 @default.
- W4382654777 cites W4200111739 @default.
- W4382654777 cites W4315754639 @default.
- W4382654777 doi "https://doi.org/10.1016/j.acra.2023.04.032" @default.
- W4382654777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37394412" @default.
- W4382654777 hasPublicationYear "2023" @default.
- W4382654777 type Work @default.
- W4382654777 citedByCount "1" @default.
- W4382654777 crossrefType "journal-article" @default.
- W4382654777 hasAuthorship W4382654777A5001998362 @default.
- W4382654777 hasAuthorship W4382654777A5013087704 @default.
- W4382654777 hasAuthorship W4382654777A5031133119 @default.
- W4382654777 hasAuthorship W4382654777A5032278821 @default.
- W4382654777 hasAuthorship W4382654777A5038305059 @default.
- W4382654777 hasAuthorship W4382654777A5043582832 @default.
- W4382654777 hasAuthorship W4382654777A5044116060 @default.
- W4382654777 hasAuthorship W4382654777A5048205844 @default.
- W4382654777 hasAuthorship W4382654777A5075745387 @default.
- W4382654777 hasAuthorship W4382654777A5076655622 @default.
- W4382654777 hasAuthorship W4382654777A5085594231 @default.
- W4382654777 hasAuthorship W4382654777A5087588065 @default.
- W4382654777 hasBestOaLocation W43826547771 @default.
- W4382654777 hasConcept C121608353 @default.
- W4382654777 hasConcept C126322002 @default.
- W4382654777 hasConcept C126838900 @default.
- W4382654777 hasConcept C127413603 @default.
- W4382654777 hasConcept C143409427 @default.
- W4382654777 hasConcept C143998085 @default.
- W4382654777 hasConcept C147176958 @default.
- W4382654777 hasConcept C2777286243 @default.
- W4382654777 hasConcept C2778424827 @default.
- W4382654777 hasConcept C34626388 @default.
- W4382654777 hasConcept C509974204 @default.
- W4382654777 hasConcept C526805850 @default.
- W4382654777 hasConcept C71924100 @default.
- W4382654777 hasConceptScore W4382654777C121608353 @default.
- W4382654777 hasConceptScore W4382654777C126322002 @default.
- W4382654777 hasConceptScore W4382654777C126838900 @default.
- W4382654777 hasConceptScore W4382654777C127413603 @default.
- W4382654777 hasConceptScore W4382654777C143409427 @default.
- W4382654777 hasConceptScore W4382654777C143998085 @default.
- W4382654777 hasConceptScore W4382654777C147176958 @default.
- W4382654777 hasConceptScore W4382654777C2777286243 @default.
- W4382654777 hasConceptScore W4382654777C2778424827 @default.