Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382655251> ?p ?o ?g. }
- W4382655251 endingPage "110753" @default.
- W4382655251 startingPage "110753" @default.
- W4382655251 abstract "Real-life objects typically contain complex structures, and the graph is a prevalent presentation for describing such objects. Multi-graph multi-label (MGML) learning is a supervised learning framework for learning complicated objects associated with multiple labels, where each object is described as a bag-of-graphs representation. However, existing methods are dependent on transforming graphs into instances, which prevents the structure information from being fully utilized; in addition, the adaptability of MGML is insufficient for the assumptions that the label set is in a closed environment and complete. In real applications, some novel labels may exist outside the fixed set, and some values of labels are missing. Existing MGML approaches are unable to deal with these novel and missing labels. In this paper, we propose a new multi-graph multi-label learning with novel and missing labels (Mgmlnm) algorithm, which is the first attempt to learn novel and missing labels in the MGML problem. To preserve the structure information, we exploit the specific graph kernels to generate an efficient graph representation. To learn multi-graph data with novel and missing labels, we propose a unified objective function, which has a two-perspective regularization term, a projection-similarity regularization term, and a bag-dependent regularization term, enabling novel and missing labels to be modeled simultaneously and exploring the complex relationship between bag and graph labels. Two first-order proximity optimization methods are then developed to solve the unified problem efficiently. A theoretical analysis of the generalization bound is provided for the unified objective. Experimental results demonstrate the effectiveness of the proposed algorithm." @default.
- W4382655251 created "2023-07-01" @default.
- W4382655251 creator A5014247912 @default.
- W4382655251 creator A5016131301 @default.
- W4382655251 creator A5031382096 @default.
- W4382655251 creator A5035886819 @default.
- W4382655251 creator A5063253432 @default.
- W4382655251 creator A5065454380 @default.
- W4382655251 date "2023-09-01" @default.
- W4382655251 modified "2023-10-15" @default.
- W4382655251 title "Multi-graph multi-label learning with novel and missing labels" @default.
- W4382655251 cites W1971039378 @default.
- W4382655251 cites W2016944307 @default.
- W4382655251 cites W2061554433 @default.
- W4382655251 cites W2078861472 @default.
- W4382655251 cites W2100556411 @default.
- W4382655251 cites W2103972604 @default.
- W4382655251 cites W2323770312 @default.
- W4382655251 cites W2443284789 @default.
- W4382655251 cites W2464391576 @default.
- W4382655251 cites W2604680822 @default.
- W4382655251 cites W2604795503 @default.
- W4382655251 cites W2753104433 @default.
- W4382655251 cites W2790955120 @default.
- W4382655251 cites W2792034376 @default.
- W4382655251 cites W2795946943 @default.
- W4382655251 cites W2885692647 @default.
- W4382655251 cites W2912840714 @default.
- W4382655251 cites W2964334643 @default.
- W4382655251 cites W2973158591 @default.
- W4382655251 cites W2997449054 @default.
- W4382655251 cites W2997905006 @default.
- W4382655251 cites W3041919753 @default.
- W4382655251 cites W3080425388 @default.
- W4382655251 cites W3082753413 @default.
- W4382655251 cites W3122012821 @default.
- W4382655251 cites W3130695835 @default.
- W4382655251 cites W3137983627 @default.
- W4382655251 cites W3166683310 @default.
- W4382655251 cites W3216340966 @default.
- W4382655251 cites W4200421053 @default.
- W4382655251 cites W4220927216 @default.
- W4382655251 cites W4244393449 @default.
- W4382655251 cites W4252060392 @default.
- W4382655251 cites W4307295769 @default.
- W4382655251 cites W4311593456 @default.
- W4382655251 cites W4312158512 @default.
- W4382655251 cites W4318774130 @default.
- W4382655251 doi "https://doi.org/10.1016/j.knosys.2023.110753" @default.
- W4382655251 hasPublicationYear "2023" @default.
- W4382655251 type Work @default.
- W4382655251 citedByCount "1" @default.
- W4382655251 countsByYear W43826552512023 @default.
- W4382655251 crossrefType "journal-article" @default.
- W4382655251 hasAuthorship W4382655251A5014247912 @default.
- W4382655251 hasAuthorship W4382655251A5016131301 @default.
- W4382655251 hasAuthorship W4382655251A5031382096 @default.
- W4382655251 hasAuthorship W4382655251A5035886819 @default.
- W4382655251 hasAuthorship W4382655251A5063253432 @default.
- W4382655251 hasAuthorship W4382655251A5065454380 @default.
- W4382655251 hasConcept C119857082 @default.
- W4382655251 hasConcept C132525143 @default.
- W4382655251 hasConcept C153180895 @default.
- W4382655251 hasConcept C154945302 @default.
- W4382655251 hasConcept C165696696 @default.
- W4382655251 hasConcept C177606310 @default.
- W4382655251 hasConcept C18903297 @default.
- W4382655251 hasConcept C2776135515 @default.
- W4382655251 hasConcept C38652104 @default.
- W4382655251 hasConcept C41008148 @default.
- W4382655251 hasConcept C59404180 @default.
- W4382655251 hasConcept C80444323 @default.
- W4382655251 hasConcept C86803240 @default.
- W4382655251 hasConceptScore W4382655251C119857082 @default.
- W4382655251 hasConceptScore W4382655251C132525143 @default.
- W4382655251 hasConceptScore W4382655251C153180895 @default.
- W4382655251 hasConceptScore W4382655251C154945302 @default.
- W4382655251 hasConceptScore W4382655251C165696696 @default.
- W4382655251 hasConceptScore W4382655251C177606310 @default.
- W4382655251 hasConceptScore W4382655251C18903297 @default.
- W4382655251 hasConceptScore W4382655251C2776135515 @default.
- W4382655251 hasConceptScore W4382655251C38652104 @default.
- W4382655251 hasConceptScore W4382655251C41008148 @default.
- W4382655251 hasConceptScore W4382655251C59404180 @default.
- W4382655251 hasConceptScore W4382655251C80444323 @default.
- W4382655251 hasConceptScore W4382655251C86803240 @default.
- W4382655251 hasFunder F4320321001 @default.
- W4382655251 hasFunder F4320328119 @default.
- W4382655251 hasFunder F4320335787 @default.
- W4382655251 hasLocation W43826552511 @default.
- W4382655251 hasOpenAccess W4382655251 @default.
- W4382655251 hasPrimaryLocation W43826552511 @default.
- W4382655251 hasRelatedWork W2292254049 @default.
- W4382655251 hasRelatedWork W2507989420 @default.
- W4382655251 hasRelatedWork W2546942002 @default.
- W4382655251 hasRelatedWork W2592385986 @default.
- W4382655251 hasRelatedWork W2743674619 @default.
- W4382655251 hasRelatedWork W2905846897 @default.