Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382655276> ?p ?o ?g. }
- W4382655276 endingPage "165165" @default.
- W4382655276 startingPage "165165" @default.
- W4382655276 abstract "Constraining the multiple climatic, lithological, topographic, and geochemical variables controlling isotope variations in large rivers is often challenging with standard statistical methods. Machine learning (ML) is an efficient method for analyzing multidimensional datasets, resolving correlated processes, and exploring relationships between variables simultaneously. We tested four ML algorithms to elucidate the controls of riverine δ7Li variations across the Yukon River Basin (YRB). We compiled (n = 102) and analyzed new samples (n = 21), producing a dataset of 123 river water samples collected across the basin during the summer including δ7Li and extracted environmental, climatological, and geological characteristics of the drainage area for each sample from open-access geospatial databases. The ML models were trained, tuned, and tested under multiple scenarios to avoid issues such as overfitting. Random Forests (RF) performed best at predicting δ7Li across the basin, with the median model explaining 62 % of the variance. The most important variables controlling δ7Li across the basin are elevation, lithology, and past glacial coverage, which ultimately influence weathering congruence. Riverine δ7Li has a negative dependence on elevation. This reflects congruent weathering in kinetically-limited mountain zones with short residence times. The consistent ranking of lithology, specifically igneous and metamorphic rock cover, as a top feature controlling riverine δ7Li modeled by the RFs is unexpected. Further study is required to validate this finding. Rivers draining areas that were extensively covered during the last glacial maximum tend to have lower δ7Li due to immature weathering profiles resulting in short residence times, less secondary mineral formation and therefore more congruent weathering. We demonstrate that ML provides a fast, simple, visualizable, and interpretable approach for disentangling key controls of isotope variations in river water. We assert that ML should become a routine tool, and present a framework for applying ML to analyze spatial metal isotope data at the catchment scale." @default.
- W4382655276 created "2023-07-01" @default.
- W4382655276 creator A5000981069 @default.
- W4382655276 creator A5031936194 @default.
- W4382655276 creator A5057144654 @default.
- W4382655276 creator A5086851752 @default.
- W4382655276 date "2023-10-01" @default.
- W4382655276 modified "2023-10-01" @default.
- W4382655276 title "Applying Machine Learning to investigate metal isotope variations at the watershed scale: A case study with lithium isotopes across the Yukon River Basin" @default.
- W4382655276 cites W1612655240 @default.
- W4382655276 cites W1625363718 @default.
- W4382655276 cites W1627787412 @default.
- W4382655276 cites W1663448062 @default.
- W4382655276 cites W1811186957 @default.
- W4382655276 cites W1825541612 @default.
- W4382655276 cites W1840924118 @default.
- W4382655276 cites W1884131190 @default.
- W4382655276 cites W1906907142 @default.
- W4382655276 cites W1964357740 @default.
- W4382655276 cites W1966391672 @default.
- W4382655276 cites W1970194344 @default.
- W4382655276 cites W1970336648 @default.
- W4382655276 cites W1971142106 @default.
- W4382655276 cites W1973457152 @default.
- W4382655276 cites W1973478069 @default.
- W4382655276 cites W1975452494 @default.
- W4382655276 cites W1977842012 @default.
- W4382655276 cites W1978232608 @default.
- W4382655276 cites W1979085854 @default.
- W4382655276 cites W1983156380 @default.
- W4382655276 cites W1983826971 @default.
- W4382655276 cites W1984117161 @default.
- W4382655276 cites W1989201701 @default.
- W4382655276 cites W1990749591 @default.
- W4382655276 cites W1991442438 @default.
- W4382655276 cites W2001356302 @default.
- W4382655276 cites W2002673413 @default.
- W4382655276 cites W2004379415 @default.
- W4382655276 cites W2005862314 @default.
- W4382655276 cites W2006763297 @default.
- W4382655276 cites W2010487336 @default.
- W4382655276 cites W2011554323 @default.
- W4382655276 cites W2023652180 @default.
- W4382655276 cites W2024693414 @default.
- W4382655276 cites W2027550303 @default.
- W4382655276 cites W2030999431 @default.
- W4382655276 cites W2032073117 @default.
- W4382655276 cites W2034020762 @default.
- W4382655276 cites W2035377063 @default.
- W4382655276 cites W2035770736 @default.
- W4382655276 cites W2035948808 @default.
- W4382655276 cites W2037903089 @default.
- W4382655276 cites W2038913727 @default.
- W4382655276 cites W2041226839 @default.
- W4382655276 cites W2041748585 @default.
- W4382655276 cites W2042994920 @default.
- W4382655276 cites W2046048171 @default.
- W4382655276 cites W2049904980 @default.
- W4382655276 cites W2053550643 @default.
- W4382655276 cites W2061887884 @default.
- W4382655276 cites W2062663870 @default.
- W4382655276 cites W2063574244 @default.
- W4382655276 cites W2064313765 @default.
- W4382655276 cites W2067487196 @default.
- W4382655276 cites W2071630498 @default.
- W4382655276 cites W2077883063 @default.
- W4382655276 cites W2078916507 @default.
- W4382655276 cites W2080079409 @default.
- W4382655276 cites W2083843146 @default.
- W4382655276 cites W2084280680 @default.
- W4382655276 cites W2084825481 @default.
- W4382655276 cites W2085299924 @default.
- W4382655276 cites W2088769802 @default.
- W4382655276 cites W2088847027 @default.
- W4382655276 cites W2089725745 @default.
- W4382655276 cites W2089809480 @default.
- W4382655276 cites W2091514122 @default.
- W4382655276 cites W2093659807 @default.
- W4382655276 cites W2093891803 @default.
- W4382655276 cites W2094352778 @default.
- W4382655276 cites W2103425624 @default.
- W4382655276 cites W2120129851 @default.
- W4382655276 cites W2124781550 @default.
- W4382655276 cites W2125510776 @default.
- W4382655276 cites W2126156012 @default.
- W4382655276 cites W2133505387 @default.
- W4382655276 cites W2142681232 @default.
- W4382655276 cites W2143406107 @default.
- W4382655276 cites W2154318011 @default.
- W4382655276 cites W2154555284 @default.
- W4382655276 cites W2156332695 @default.
- W4382655276 cites W2159371299 @default.
- W4382655276 cites W2160566020 @default.
- W4382655276 cites W2291165113 @default.
- W4382655276 cites W2549120602 @default.
- W4382655276 cites W2554317204 @default.
- W4382655276 cites W2588810797 @default.
- W4382655276 cites W2601139971 @default.