Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382657716> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4382657716 endingPage "e03561" @default.
- W4382657716 startingPage "e03561" @default.
- W4382657716 abstract "Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications for smart cities and controlling municipal operations in real time. The most significant issue with applications to smart cities has been the handling of solid waste, which may have negative consequences on the health and well-being of people. Waste management has become a problem that developing and developed nations must face. The management of solid waste is a significant and exciting issue that affects habitats all around the world. Thus, it is necessary to create an efficient method to eliminate these issues or, at the very least, reduce them to a manageable level. Theoretical framework: This work proposed an Improved Particle Swarm Optimization with Deep Learning-based Municipal Solid Waste Management (IPSODL-MSWM) in smart cities. Methods: The IPSODL-MSWM approach aims to identify various types of solid waste materials and enable sustainable waste management. A Single Shot Detection (SSD) model enables efficient object detection in the IPSODL-MSWM paradigm. Then, feature vectors were generated using the MobileNetV2 model based on a deep Convolutional Neural Network (CNN). IPSO has been obtained by using a hybrid Genetic Algorithm (GA) and PSO algorithm. Results and Conclusion: The IPSODL method has been employed for automatic hyperparameter tuning since manual trial-and-error hyperparameter tuning is time-consuming. Implications of the research: The IPSODL-MSWM approach uses Support Vector Machine (SVM) for accurate municipal excess categorization in this work. This implies sustainable waste management model for better smart city development. Originality/value: With an optimal accuracy of 99.45%, many simulations show the IPSODL-MSWM model's enhanced capability for classification." @default.
- W4382657716 created "2023-07-01" @default.
- W4382657716 creator A5001410740 @default.
- W4382657716 creator A5019525277 @default.
- W4382657716 creator A5036573324 @default.
- W4382657716 creator A5051798749 @default.
- W4382657716 date "2023-06-27" @default.
- W4382657716 modified "2023-09-27" @default.
- W4382657716 title "Improved Particle Swarm Optimization with Deep Learning-Based Municipal Solid Waste Management in Smart Cities" @default.
- W4382657716 cites W2902755231 @default.
- W4382657716 cites W2944096107 @default.
- W4382657716 cites W2967464952 @default.
- W4382657716 cites W2971532241 @default.
- W4382657716 cites W3005353669 @default.
- W4382657716 cites W3006129156 @default.
- W4382657716 cites W3009913199 @default.
- W4382657716 cites W3010122057 @default.
- W4382657716 cites W3016905731 @default.
- W4382657716 cites W3017369949 @default.
- W4382657716 cites W3033752295 @default.
- W4382657716 cites W3034554183 @default.
- W4382657716 cites W3040621094 @default.
- W4382657716 cites W3082813113 @default.
- W4382657716 cites W3088063380 @default.
- W4382657716 cites W3093414282 @default.
- W4382657716 cites W3098778830 @default.
- W4382657716 cites W3159520521 @default.
- W4382657716 cites W3181401814 @default.
- W4382657716 cites W3188528628 @default.
- W4382657716 cites W3197013437 @default.
- W4382657716 cites W3197195953 @default.
- W4382657716 cites W3205100743 @default.
- W4382657716 cites W4291784202 @default.
- W4382657716 cites W4313554573 @default.
- W4382657716 cites W4313652485 @default.
- W4382657716 cites W4367298606 @default.
- W4382657716 doi "https://doi.org/10.24857/rgsa.v17n4-022" @default.
- W4382657716 hasPublicationYear "2023" @default.
- W4382657716 type Work @default.
- W4382657716 citedByCount "0" @default.
- W4382657716 crossrefType "journal-article" @default.
- W4382657716 hasAuthorship W4382657716A5001410740 @default.
- W4382657716 hasAuthorship W4382657716A5019525277 @default.
- W4382657716 hasAuthorship W4382657716A5036573324 @default.
- W4382657716 hasAuthorship W4382657716A5051798749 @default.
- W4382657716 hasBestOaLocation W43826577161 @default.
- W4382657716 hasConcept C108583219 @default.
- W4382657716 hasConcept C119857082 @default.
- W4382657716 hasConcept C127413603 @default.
- W4382657716 hasConcept C149635348 @default.
- W4382657716 hasConcept C154945302 @default.
- W4382657716 hasConcept C2777103469 @default.
- W4382657716 hasConcept C2986463069 @default.
- W4382657716 hasConcept C41008148 @default.
- W4382657716 hasConcept C548081761 @default.
- W4382657716 hasConcept C75779659 @default.
- W4382657716 hasConcept C81363708 @default.
- W4382657716 hasConcept C81860439 @default.
- W4382657716 hasConcept C85617194 @default.
- W4382657716 hasConcept C8642999 @default.
- W4382657716 hasConcept C8880873 @default.
- W4382657716 hasConceptScore W4382657716C108583219 @default.
- W4382657716 hasConceptScore W4382657716C119857082 @default.
- W4382657716 hasConceptScore W4382657716C127413603 @default.
- W4382657716 hasConceptScore W4382657716C149635348 @default.
- W4382657716 hasConceptScore W4382657716C154945302 @default.
- W4382657716 hasConceptScore W4382657716C2777103469 @default.
- W4382657716 hasConceptScore W4382657716C2986463069 @default.
- W4382657716 hasConceptScore W4382657716C41008148 @default.
- W4382657716 hasConceptScore W4382657716C548081761 @default.
- W4382657716 hasConceptScore W4382657716C75779659 @default.
- W4382657716 hasConceptScore W4382657716C81363708 @default.
- W4382657716 hasConceptScore W4382657716C81860439 @default.
- W4382657716 hasConceptScore W4382657716C85617194 @default.
- W4382657716 hasConceptScore W4382657716C8642999 @default.
- W4382657716 hasConceptScore W4382657716C8880873 @default.
- W4382657716 hasIssue "4" @default.
- W4382657716 hasLocation W43826577161 @default.
- W4382657716 hasOpenAccess W4382657716 @default.
- W4382657716 hasPrimaryLocation W43826577161 @default.
- W4382657716 hasRelatedWork W2337926734 @default.
- W4382657716 hasRelatedWork W3130227562 @default.
- W4382657716 hasRelatedWork W3206248117 @default.
- W4382657716 hasRelatedWork W4283697347 @default.
- W4382657716 hasRelatedWork W4304182771 @default.
- W4382657716 hasRelatedWork W4307195028 @default.
- W4382657716 hasRelatedWork W4320802194 @default.
- W4382657716 hasRelatedWork W4366224123 @default.
- W4382657716 hasRelatedWork W4381487685 @default.
- W4382657716 hasRelatedWork W4381832759 @default.
- W4382657716 hasVolume "17" @default.
- W4382657716 isParatext "false" @default.
- W4382657716 isRetracted "false" @default.
- W4382657716 workType "article" @default.