Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382657988> ?p ?o ?g. }
- W4382657988 endingPage "2578" @default.
- W4382657988 startingPage "2564" @default.
- W4382657988 abstract "Finite Rate of Innovation (FRI) sampling theory enables reconstruction of classes of continuous non-bandlimited signals that have a small number of free parameters from their low-rate discrete samples. This task is often translated into a spectral estimation problem that is solved using methods involving estimating signal subspaces, which tend to break down at a certain peak signal-to-noise ratio (PSNR). To avoid this breakdown, we consider alternative approaches that make use of information from labelled data. We propose two model-based learning methods, including deep unfolding the denoising process in spectral estimation, and constructing an encoder-decoder deep neural network that models the acquisition process. Simulation results of both learning algorithms indicate significant improvements of the breakdown PSNR over classical subspace-based methods. While the deep unfolded network achieves similar performance as the classical FRI techniques and outperforms the encoder-decoder network in the low noise regimes, the latter allows to reconstruct the FRI signal even when the sampling kernel is unknown. We also achieve competitive results in detecting pulses from in vivo calcium imaging data in terms of true positive and false positive rate while providing more precise estimations." @default.
- W4382657988 created "2023-07-01" @default.
- W4382657988 creator A5037501616 @default.
- W4382657988 creator A5043029411 @default.
- W4382657988 creator A5053203917 @default.
- W4382657988 creator A5077715163 @default.
- W4382657988 date "2023-01-01" @default.
- W4382657988 modified "2023-10-13" @default.
- W4382657988 title "Learning-Based Reconstruction of FRI Signals" @default.
- W4382657988 cites W1603075283 @default.
- W4382657988 cites W1966096622 @default.
- W4382657988 cites W2002663556 @default.
- W4382657988 cites W2014381155 @default.
- W4382657988 cites W2028191993 @default.
- W4382657988 cites W2043422651 @default.
- W4382657988 cites W2047928014 @default.
- W4382657988 cites W2062688607 @default.
- W4382657988 cites W2065656021 @default.
- W4382657988 cites W2067474937 @default.
- W4382657988 cites W2103300762 @default.
- W4382657988 cites W2103973889 @default.
- W4382657988 cites W2111273705 @default.
- W4382657988 cites W2118682956 @default.
- W4382657988 cites W2126625374 @default.
- W4382657988 cites W2137983211 @default.
- W4382657988 cites W2138787877 @default.
- W4382657988 cites W2149213383 @default.
- W4382657988 cites W2152515657 @default.
- W4382657988 cites W2153058280 @default.
- W4382657988 cites W2153070503 @default.
- W4382657988 cites W2158537680 @default.
- W4382657988 cites W2171332611 @default.
- W4382657988 cites W2267573953 @default.
- W4382657988 cites W2565293665 @default.
- W4382657988 cites W2962683884 @default.
- W4382657988 cites W2963072534 @default.
- W4382657988 cites W2964325628 @default.
- W4382657988 cites W2964342924 @default.
- W4382657988 cites W2972675027 @default.
- W4382657988 cites W3015441078 @default.
- W4382657988 cites W3045012028 @default.
- W4382657988 cites W3125537303 @default.
- W4382657988 cites W3133902371 @default.
- W4382657988 cites W3196420731 @default.
- W4382657988 cites W4205966582 @default.
- W4382657988 cites W4206725636 @default.
- W4382657988 cites W4377715085 @default.
- W4382657988 doi "https://doi.org/10.1109/tsp.2023.3290355" @default.
- W4382657988 hasPublicationYear "2023" @default.
- W4382657988 type Work @default.
- W4382657988 citedByCount "0" @default.
- W4382657988 crossrefType "journal-article" @default.
- W4382657988 hasAuthorship W4382657988A5037501616 @default.
- W4382657988 hasAuthorship W4382657988A5043029411 @default.
- W4382657988 hasAuthorship W4382657988A5053203917 @default.
- W4382657988 hasAuthorship W4382657988A5077715163 @default.
- W4382657988 hasBestOaLocation W43826579882 @default.
- W4382657988 hasConcept C101738243 @default.
- W4382657988 hasConcept C102519508 @default.
- W4382657988 hasConcept C104267543 @default.
- W4382657988 hasConcept C106131492 @default.
- W4382657988 hasConcept C108583219 @default.
- W4382657988 hasConcept C111919701 @default.
- W4382657988 hasConcept C11413529 @default.
- W4382657988 hasConcept C114614502 @default.
- W4382657988 hasConcept C115961682 @default.
- W4382657988 hasConcept C118505674 @default.
- W4382657988 hasConcept C12362212 @default.
- W4382657988 hasConcept C124851039 @default.
- W4382657988 hasConcept C129997835 @default.
- W4382657988 hasConcept C134306372 @default.
- W4382657988 hasConcept C140779682 @default.
- W4382657988 hasConcept C153180895 @default.
- W4382657988 hasConcept C154945302 @default.
- W4382657988 hasConcept C163294075 @default.
- W4382657988 hasConcept C2524010 @default.
- W4382657988 hasConcept C29265498 @default.
- W4382657988 hasConcept C31972630 @default.
- W4382657988 hasConcept C32834561 @default.
- W4382657988 hasConcept C33923547 @default.
- W4382657988 hasConcept C41008148 @default.
- W4382657988 hasConcept C554190296 @default.
- W4382657988 hasConcept C70958404 @default.
- W4382657988 hasConcept C74193536 @default.
- W4382657988 hasConcept C76155785 @default.
- W4382657988 hasConcept C99498987 @default.
- W4382657988 hasConceptScore W4382657988C101738243 @default.
- W4382657988 hasConceptScore W4382657988C102519508 @default.
- W4382657988 hasConceptScore W4382657988C104267543 @default.
- W4382657988 hasConceptScore W4382657988C106131492 @default.
- W4382657988 hasConceptScore W4382657988C108583219 @default.
- W4382657988 hasConceptScore W4382657988C111919701 @default.
- W4382657988 hasConceptScore W4382657988C11413529 @default.
- W4382657988 hasConceptScore W4382657988C114614502 @default.
- W4382657988 hasConceptScore W4382657988C115961682 @default.
- W4382657988 hasConceptScore W4382657988C118505674 @default.
- W4382657988 hasConceptScore W4382657988C12362212 @default.
- W4382657988 hasConceptScore W4382657988C124851039 @default.