Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382700178> ?p ?o ?g. }
- W4382700178 endingPage "195" @default.
- W4382700178 startingPage "195" @default.
- W4382700178 abstract "For a few decades, machine learning has been extensively utilized for turbulence research. The goal of this work is to investigate the reconstruction of turbulence from minimal or lower-resolution datasets as inputs using reduced-order models. This work seeks to effectively reconstruct high-resolution 3D turbulent flow fields using unsupervised physics-informed deep learning. The first objective of this study is to reconstruct turbulent channel flow fields and verify these with respect to the statistics. The second objective is to compare the turbulent flow structures generated from a GAN with a DNS. The proposed deep learning algorithm effectively replicated the first- and second-order statistics of turbulent channel flows of Reτ= 180 within a 2% and 5% error, respectively. Additionally, by incorporating physics-based corrections to the loss functions, the proposed algorithm was also able to reconstruct λ2 structures. The results suggest that the proposed algorithm can be useful for reconstructing a range of 3D turbulent flows given computational and experimental efforts." @default.
- W4382700178 created "2023-07-01" @default.
- W4382700178 creator A5046802887 @default.
- W4382700178 date "2023-06-29" @default.
- W4382700178 modified "2023-09-29" @default.
- W4382700178 title "Physics-Informed Super-Resolution of Turbulent Channel Flows via Three-Dimensional Generative Adversarial Networks" @default.
- W4382700178 cites W1514502579 @default.
- W4382700178 cites W1964321515 @default.
- W4382700178 cites W1976638764 @default.
- W4382700178 cites W1979176272 @default.
- W4382700178 cites W1981799239 @default.
- W4382700178 cites W1992742391 @default.
- W4382700178 cites W2020232107 @default.
- W4382700178 cites W2033668471 @default.
- W4382700178 cites W2049247955 @default.
- W4382700178 cites W2074152244 @default.
- W4382700178 cites W2100776582 @default.
- W4382700178 cites W2131537960 @default.
- W4382700178 cites W2133665775 @default.
- W4382700178 cites W2139247058 @default.
- W4382700178 cites W2293609966 @default.
- W4382700178 cites W2402685789 @default.
- W4382700178 cites W2564800775 @default.
- W4382700178 cites W2745110207 @default.
- W4382700178 cites W2802768264 @default.
- W4382700178 cites W2899283552 @default.
- W4382700178 cites W2902480423 @default.
- W4382700178 cites W2907002243 @default.
- W4382700178 cites W2916501278 @default.
- W4382700178 cites W2944269878 @default.
- W4382700178 cites W2946794331 @default.
- W4382700178 cites W2962793481 @default.
- W4382700178 cites W2985383053 @default.
- W4382700178 cites W3005641041 @default.
- W4382700178 cites W3007149244 @default.
- W4382700178 cites W3102140816 @default.
- W4382700178 cites W3120515765 @default.
- W4382700178 cites W3122043357 @default.
- W4382700178 cites W3180214434 @default.
- W4382700178 cites W3198740648 @default.
- W4382700178 cites W4210550828 @default.
- W4382700178 cites W4211029392 @default.
- W4382700178 cites W4225341304 @default.
- W4382700178 cites W4309822039 @default.
- W4382700178 cites W4310193759 @default.
- W4382700178 doi "https://doi.org/10.3390/fluids8070195" @default.
- W4382700178 hasPublicationYear "2023" @default.
- W4382700178 type Work @default.
- W4382700178 citedByCount "0" @default.
- W4382700178 crossrefType "journal-article" @default.
- W4382700178 hasAuthorship W4382700178A5046802887 @default.
- W4382700178 hasBestOaLocation W43827001781 @default.
- W4382700178 hasConcept C11413529 @default.
- W4382700178 hasConcept C121332964 @default.
- W4382700178 hasConcept C121864883 @default.
- W4382700178 hasConcept C127162648 @default.
- W4382700178 hasConcept C127413603 @default.
- W4382700178 hasConcept C138268822 @default.
- W4382700178 hasConcept C146978453 @default.
- W4382700178 hasConcept C154945302 @default.
- W4382700178 hasConcept C180925781 @default.
- W4382700178 hasConcept C196558001 @default.
- W4382700178 hasConcept C204323151 @default.
- W4382700178 hasConcept C38349280 @default.
- W4382700178 hasConcept C39890363 @default.
- W4382700178 hasConcept C41008148 @default.
- W4382700178 hasConcept C57879066 @default.
- W4382700178 hasConcept C76155785 @default.
- W4382700178 hasConceptScore W4382700178C11413529 @default.
- W4382700178 hasConceptScore W4382700178C121332964 @default.
- W4382700178 hasConceptScore W4382700178C121864883 @default.
- W4382700178 hasConceptScore W4382700178C127162648 @default.
- W4382700178 hasConceptScore W4382700178C127413603 @default.
- W4382700178 hasConceptScore W4382700178C138268822 @default.
- W4382700178 hasConceptScore W4382700178C146978453 @default.
- W4382700178 hasConceptScore W4382700178C154945302 @default.
- W4382700178 hasConceptScore W4382700178C180925781 @default.
- W4382700178 hasConceptScore W4382700178C196558001 @default.
- W4382700178 hasConceptScore W4382700178C204323151 @default.
- W4382700178 hasConceptScore W4382700178C38349280 @default.
- W4382700178 hasConceptScore W4382700178C39890363 @default.
- W4382700178 hasConceptScore W4382700178C41008148 @default.
- W4382700178 hasConceptScore W4382700178C57879066 @default.
- W4382700178 hasConceptScore W4382700178C76155785 @default.
- W4382700178 hasIssue "7" @default.
- W4382700178 hasLocation W43827001781 @default.
- W4382700178 hasOpenAccess W4382700178 @default.
- W4382700178 hasPrimaryLocation W43827001781 @default.
- W4382700178 hasRelatedWork W1967859439 @default.
- W4382700178 hasRelatedWork W1986279933 @default.
- W4382700178 hasRelatedWork W2004252737 @default.
- W4382700178 hasRelatedWork W2005948443 @default.
- W4382700178 hasRelatedWork W2035627876 @default.
- W4382700178 hasRelatedWork W2282638295 @default.
- W4382700178 hasRelatedWork W2313382643 @default.
- W4382700178 hasRelatedWork W2337741356 @default.
- W4382700178 hasRelatedWork W4300615433 @default.
- W4382700178 hasRelatedWork W760806976 @default.