Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382721504> ?p ?o ?g. }
- W4382721504 endingPage "1334" @default.
- W4382721504 startingPage "1334" @default.
- W4382721504 abstract "Brazil is one of the world’s wood short-fiber producers, cultivating 7.5 million hectares of eucalypt trees. Foresters and resource managers often face difficulties in surveying reliable Eucalyptus productivity levels for the purpose of purchasing and prospecting lands. Spatial data science (DS) and machine learning (ML) provide powerful approaches to make the best use of the large datasets available today. Agriculture has made great use of these approaches, and in this paper, we explore how forestry can benefit as well. We hypothesized that both DS and ML techniques can be used to improve Eucalyptus productivity zoning based on multiple operational datasets of tree growth and environment. Based on more than 12,000 permanent forest inventory plots of commercial Eucalyptus plantations and the climate, soil, and altitude variables associated with them, a supervised ML approach was adjusted to model the forest plantation productivity. A multi-tuning of the decision-tree (DT) algorithm hyperparameters was prepared to yield 450 DT models, with a better one delivering an RMSE of 53.5 m3 ha−1, split in 35 terminal nodes, here interpreted as Eucalyptus productivity zones. The DT model showed an optimum performance index of 0.83, a coefficient of determination of 0.91, a root mean squared error of 12.3 m3 ha−1, and a mean absolute percentage error only of 3.1% in predicting the testing dataset throughout the study area. The DT rule set was interpreted in a user-friendly table and was prepared to classify any location within the study area in each one of the 35 productivity zones based on the required environment variables of the DT algorithm. The high quality of the model obtained made it possible to spatialize the DT rules, providing a reliable cartographic visualization of the probability levels of true Eucalyptus productivity for a huge region of forest-based industries in Brazil. These data-science techniques also provided a yield gap analysis using a very down-to-earth approach. We estimated a yield gap by an amount of 4.2 × 107 m3, representing a few more than 113,000 ha, or 15% of the current forest base. This is the amount of avoided area expansion to accumulate the same wood stock in case the productivity is raised to the attainable level in each zone. This present study provided deeper analysis and reproducible tools to manage forest assets sustainably." @default.
- W4382721504 created "2023-07-01" @default.
- W4382721504 creator A5018001757 @default.
- W4382721504 creator A5021282904 @default.
- W4382721504 creator A5025110167 @default.
- W4382721504 creator A5071789575 @default.
- W4382721504 date "2023-06-29" @default.
- W4382721504 modified "2023-09-30" @default.
- W4382721504 title "Decision-Tree Application to Predict and Spatialize the Wood Productivity Probabilities of Eucalyptus Plantations" @default.
- W4382721504 cites W180836830 @default.
- W4382721504 cites W1896552550 @default.
- W4382721504 cites W1982495989 @default.
- W4382721504 cites W1987557628 @default.
- W4382721504 cites W2002115844 @default.
- W4382721504 cites W2017496690 @default.
- W4382721504 cites W2056015657 @default.
- W4382721504 cites W2084742474 @default.
- W4382721504 cites W2111926787 @default.
- W4382721504 cites W2143629408 @default.
- W4382721504 cites W2146496990 @default.
- W4382721504 cites W2514153949 @default.
- W4382721504 cites W2594398464 @default.
- W4382721504 cites W2611956779 @default.
- W4382721504 cites W2756138331 @default.
- W4382721504 cites W2756972830 @default.
- W4382721504 cites W2790108282 @default.
- W4382721504 cites W2897165637 @default.
- W4382721504 cites W2898450603 @default.
- W4382721504 cites W2898543370 @default.
- W4382721504 cites W2922303341 @default.
- W4382721504 cites W2946891987 @default.
- W4382721504 cites W2947883586 @default.
- W4382721504 cites W2951384768 @default.
- W4382721504 cites W2956293820 @default.
- W4382721504 cites W2964901896 @default.
- W4382721504 cites W2971975205 @default.
- W4382721504 cites W2986455326 @default.
- W4382721504 cites W3003390858 @default.
- W4382721504 cites W3005202265 @default.
- W4382721504 cites W3008137818 @default.
- W4382721504 cites W3008599632 @default.
- W4382721504 cites W3014824265 @default.
- W4382721504 cites W3015740158 @default.
- W4382721504 cites W3024940310 @default.
- W4382721504 cites W3037579567 @default.
- W4382721504 cites W3045768867 @default.
- W4382721504 cites W3046528616 @default.
- W4382721504 cites W3079760979 @default.
- W4382721504 cites W3126671230 @default.
- W4382721504 cites W3127060800 @default.
- W4382721504 cites W3139160332 @default.
- W4382721504 cites W3203993388 @default.
- W4382721504 cites W3211624569 @default.
- W4382721504 cites W4200117862 @default.
- W4382721504 cites W4200181176 @default.
- W4382721504 cites W4200484333 @default.
- W4382721504 cites W4212997026 @default.
- W4382721504 cites W4285733213 @default.
- W4382721504 cites W4365152786 @default.
- W4382721504 cites W4376126982 @default.
- W4382721504 doi "https://doi.org/10.3390/f14071334" @default.
- W4382721504 hasPublicationYear "2023" @default.
- W4382721504 type Work @default.
- W4382721504 citedByCount "0" @default.
- W4382721504 crossrefType "journal-article" @default.
- W4382721504 hasAuthorship W4382721504A5018001757 @default.
- W4382721504 hasAuthorship W4382721504A5021282904 @default.
- W4382721504 hasAuthorship W4382721504A5025110167 @default.
- W4382721504 hasAuthorship W4382721504A5071789575 @default.
- W4382721504 hasBestOaLocation W43827215041 @default.
- W4382721504 hasConcept C105795698 @default.
- W4382721504 hasConcept C113174947 @default.
- W4382721504 hasConcept C118518473 @default.
- W4382721504 hasConcept C127413603 @default.
- W4382721504 hasConcept C134306372 @default.
- W4382721504 hasConcept C139719470 @default.
- W4382721504 hasConcept C139945424 @default.
- W4382721504 hasConcept C162324750 @default.
- W4382721504 hasConcept C166957645 @default.
- W4382721504 hasConcept C18903297 @default.
- W4382721504 hasConcept C202050865 @default.
- W4382721504 hasConcept C204983608 @default.
- W4382721504 hasConcept C205649164 @default.
- W4382721504 hasConcept C2777089699 @default.
- W4382721504 hasConcept C2779752776 @default.
- W4382721504 hasConcept C28631016 @default.
- W4382721504 hasConcept C33923547 @default.
- W4382721504 hasConcept C39432304 @default.
- W4382721504 hasConcept C41008148 @default.
- W4382721504 hasConcept C54286561 @default.
- W4382721504 hasConcept C86803240 @default.
- W4382721504 hasConcept C88463610 @default.
- W4382721504 hasConcept C97137747 @default.
- W4382721504 hasConceptScore W4382721504C105795698 @default.
- W4382721504 hasConceptScore W4382721504C113174947 @default.
- W4382721504 hasConceptScore W4382721504C118518473 @default.
- W4382721504 hasConceptScore W4382721504C127413603 @default.
- W4382721504 hasConceptScore W4382721504C134306372 @default.