Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382723904> ?p ?o ?g. }
- W4382723904 endingPage "643" @default.
- W4382723904 startingPage "643" @default.
- W4382723904 abstract "This paper presents a set of adaptive parameter control methods through reinforcement learning for the particle swarm algorithm. The aim is to adjust the algorithm’s parameters during the run, to provide the metaheuristics with the ability to learn and adapt dynamically to the problem and its context. The proposal integrates Q–Learning into the optimization algorithm for parameter control. The applied strategies include a shared Q–table, separate tables per parameter, and flexible state representation. The study was evaluated through various instances of the multidimensional knapsack problem belonging to the NP-hard class. It can be formulated as a mathematical combinatorial problem involving a set of items with multiple attributes or dimensions, aiming to maximize the total value or utility while respecting constraints on the total capacity or available resources. Experimental and statistical tests were carried out to compare the results obtained by each of these hybridizations, concluding that they can significantly improve the quality of the solutions found compared to the native version of the algorithm." @default.
- W4382723904 created "2023-07-01" @default.
- W4382723904 creator A5020623714 @default.
- W4382723904 creator A5041828713 @default.
- W4382723904 creator A5051439321 @default.
- W4382723904 creator A5054681273 @default.
- W4382723904 creator A5089757639 @default.
- W4382723904 creator A5092370517 @default.
- W4382723904 creator A5092370518 @default.
- W4382723904 creator A5092370519 @default.
- W4382723904 date "2023-06-28" @default.
- W4382723904 modified "2023-09-27" @default.
- W4382723904 title "A Learning—Based Particle Swarm Optimizer for Solving Mathematical Combinatorial Problems" @default.
- W4382723904 cites W1545379711 @default.
- W4382723904 cites W1553308207 @default.
- W4382723904 cites W1964222026 @default.
- W4382723904 cites W1975569604 @default.
- W4382723904 cites W1990607231 @default.
- W4382723904 cites W1999784138 @default.
- W4382723904 cites W2010545951 @default.
- W4382723904 cites W2026731053 @default.
- W4382723904 cites W2040147130 @default.
- W4382723904 cites W2041667362 @default.
- W4382723904 cites W2049967755 @default.
- W4382723904 cites W2049999744 @default.
- W4382723904 cites W2062003033 @default.
- W4382723904 cites W2092141156 @default.
- W4382723904 cites W2107726111 @default.
- W4382723904 cites W2112681424 @default.
- W4382723904 cites W2118044993 @default.
- W4382723904 cites W2146879413 @default.
- W4382723904 cites W2151554678 @default.
- W4382723904 cites W2163764790 @default.
- W4382723904 cites W2344019355 @default.
- W4382723904 cites W2401668708 @default.
- W4382723904 cites W2465907943 @default.
- W4382723904 cites W2466167884 @default.
- W4382723904 cites W2476910606 @default.
- W4382723904 cites W2507510427 @default.
- W4382723904 cites W2598515728 @default.
- W4382723904 cites W2612309817 @default.
- W4382723904 cites W2627129130 @default.
- W4382723904 cites W2794361564 @default.
- W4382723904 cites W2804227588 @default.
- W4382723904 cites W2948512238 @default.
- W4382723904 cites W2954659334 @default.
- W4382723904 cites W2961614712 @default.
- W4382723904 cites W2967399330 @default.
- W4382723904 cites W2977331393 @default.
- W4382723904 cites W3004833987 @default.
- W4382723904 cites W3020316412 @default.
- W4382723904 cites W3029383985 @default.
- W4382723904 cites W3038993715 @default.
- W4382723904 cites W3039866308 @default.
- W4382723904 cites W3078359278 @default.
- W4382723904 cites W3102723906 @default.
- W4382723904 cites W3104820786 @default.
- W4382723904 cites W3158694080 @default.
- W4382723904 cites W3159134414 @default.
- W4382723904 cites W3171017576 @default.
- W4382723904 cites W3189506083 @default.
- W4382723904 cites W3208851364 @default.
- W4382723904 cites W32403112 @default.
- W4382723904 cites W4205129187 @default.
- W4382723904 cites W4205715817 @default.
- W4382723904 cites W4210457632 @default.
- W4382723904 cites W4229942708 @default.
- W4382723904 cites W4245306669 @default.
- W4382723904 cites W4246565613 @default.
- W4382723904 cites W4281849411 @default.
- W4382723904 doi "https://doi.org/10.3390/axioms12070643" @default.
- W4382723904 hasPublicationYear "2023" @default.
- W4382723904 type Work @default.
- W4382723904 citedByCount "0" @default.
- W4382723904 crossrefType "journal-article" @default.
- W4382723904 hasAuthorship W4382723904A5020623714 @default.
- W4382723904 hasAuthorship W4382723904A5041828713 @default.
- W4382723904 hasAuthorship W4382723904A5051439321 @default.
- W4382723904 hasAuthorship W4382723904A5054681273 @default.
- W4382723904 hasAuthorship W4382723904A5089757639 @default.
- W4382723904 hasAuthorship W4382723904A5092370517 @default.
- W4382723904 hasAuthorship W4382723904A5092370518 @default.
- W4382723904 hasAuthorship W4382723904A5092370519 @default.
- W4382723904 hasBestOaLocation W43827239041 @default.
- W4382723904 hasConcept C109718341 @default.
- W4382723904 hasConcept C113138325 @default.
- W4382723904 hasConcept C114614502 @default.
- W4382723904 hasConcept C115908005 @default.
- W4382723904 hasConcept C126255220 @default.
- W4382723904 hasConcept C151730666 @default.
- W4382723904 hasConcept C154945302 @default.
- W4382723904 hasConcept C177264268 @default.
- W4382723904 hasConcept C17744445 @default.
- W4382723904 hasConcept C199360897 @default.
- W4382723904 hasConcept C199539241 @default.
- W4382723904 hasConcept C2776359362 @default.
- W4382723904 hasConcept C2777212361 @default.
- W4382723904 hasConcept C2779343474 @default.