Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382728044> ?p ?o ?g. }
- W4382728044 endingPage "197" @default.
- W4382728044 startingPage "197" @default.
- W4382728044 abstract "This study aimed to examine the shear strength characteristics of sand–granular rubber mixtures in direct shear tests. Two different sizes of rubber and one of sand were used in the experiment, with the sand being mixed with various percentages of rubber (0%, 10%, 20%, 30%, and 50%). The mixtures were prepared at three different densities (loose, slightly dense, and dense), and shear stress was tested at four normal stresses (30, 55, 105, and 200 kPa). The results of 80 direct shear tests were used to calculate the peak and residual internal friction angles of the mixtures, and it was found that the normal stress had a significant effect on the internal friction angle, with an increase in normal stress leading to a decrease in the internal friction angle. These results indicated that the Mohr–Coulomb theory, which applies to rigid particles only, is not applicable in sand–rubber mixtures, where stiff particles (sand) and soft particles (rubber) are mixed. The shear strength of the mixtures was also influenced by multiple factors, including particle morphology (size ratio, shape, and gradation), mixture density, and normal stress. For the first time in the literature, genetic programming, classification and regression random forests, and multiple linear regression were used to predict the peak and residual internal friction angles. The genetic programming resulted in the creation of two new equations based on mixture unit weight, normal stress, and rubber content. Both artificial intelligence models were found to be capable of accurately predicting the peak and residual internal friction angles of sand–rubber mixtures." @default.
- W4382728044 created "2023-07-01" @default.
- W4382728044 creator A5007436379 @default.
- W4382728044 creator A5012167676 @default.
- W4382728044 creator A5039929598 @default.
- W4382728044 creator A5076421863 @default.
- W4382728044 date "2023-06-28" @default.
- W4382728044 modified "2023-10-16" @default.
- W4382728044 title "Internal Friction Angle of Cohesionless Binary Mixture Sand–Granular Rubber Using Experimental Study and Machine Learning" @default.
- W4382728044 cites W1577148454 @default.
- W4382728044 cites W1577677181 @default.
- W4382728044 cites W1967152112 @default.
- W4382728044 cites W1973117214 @default.
- W4382728044 cites W1977209256 @default.
- W4382728044 cites W1989197333 @default.
- W4382728044 cites W1992301982 @default.
- W4382728044 cites W2010244320 @default.
- W4382728044 cites W2012690470 @default.
- W4382728044 cites W2013737272 @default.
- W4382728044 cites W2014950347 @default.
- W4382728044 cites W2016000961 @default.
- W4382728044 cites W2022534731 @default.
- W4382728044 cites W2040154471 @default.
- W4382728044 cites W2040492000 @default.
- W4382728044 cites W2051278241 @default.
- W4382728044 cites W2059504892 @default.
- W4382728044 cites W2063604236 @default.
- W4382728044 cites W2125685890 @default.
- W4382728044 cites W2132784718 @default.
- W4382728044 cites W2143254258 @default.
- W4382728044 cites W2416094904 @default.
- W4382728044 cites W2475539404 @default.
- W4382728044 cites W2518356065 @default.
- W4382728044 cites W2556156268 @default.
- W4382728044 cites W2588927678 @default.
- W4382728044 cites W2591707779 @default.
- W4382728044 cites W2598386174 @default.
- W4382728044 cites W2610746765 @default.
- W4382728044 cites W2611519988 @default.
- W4382728044 cites W2649807977 @default.
- W4382728044 cites W2766101344 @default.
- W4382728044 cites W2771049346 @default.
- W4382728044 cites W2789307310 @default.
- W4382728044 cites W2801309333 @default.
- W4382728044 cites W2911964244 @default.
- W4382728044 cites W2954157574 @default.
- W4382728044 cites W2999294534 @default.
- W4382728044 cites W3082633789 @default.
- W4382728044 cites W3102212426 @default.
- W4382728044 cites W3108107694 @default.
- W4382728044 cites W3168795699 @default.
- W4382728044 cites W3171750385 @default.
- W4382728044 cites W4212883601 @default.
- W4382728044 cites W4220909006 @default.
- W4382728044 cites W4282570360 @default.
- W4382728044 cites W4291383001 @default.
- W4382728044 cites W4306630567 @default.
- W4382728044 cites W4307062166 @default.
- W4382728044 cites W4313442316 @default.
- W4382728044 cites W4315695736 @default.
- W4382728044 cites W4315851970 @default.
- W4382728044 cites W4318824093 @default.
- W4382728044 cites W4322762285 @default.
- W4382728044 cites W4323981583 @default.
- W4382728044 cites W4362500126 @default.
- W4382728044 cites W4362723776 @default.
- W4382728044 doi "https://doi.org/10.3390/geosciences13070197" @default.
- W4382728044 hasPublicationYear "2023" @default.
- W4382728044 type Work @default.
- W4382728044 citedByCount "8" @default.
- W4382728044 countsByYear W43827280442023 @default.
- W4382728044 crossrefType "journal-article" @default.
- W4382728044 hasAuthorship W4382728044A5007436379 @default.
- W4382728044 hasAuthorship W4382728044A5012167676 @default.
- W4382728044 hasAuthorship W4382728044A5039929598 @default.
- W4382728044 hasAuthorship W4382728044A5076421863 @default.
- W4382728044 hasBestOaLocation W43827280441 @default.
- W4382728044 hasConcept C111368507 @default.
- W4382728044 hasConcept C127313418 @default.
- W4382728044 hasConcept C127413603 @default.
- W4382728044 hasConcept C135628077 @default.
- W4382728044 hasConcept C136257953 @default.
- W4382728044 hasConcept C151730666 @default.
- W4382728044 hasConcept C151995515 @default.
- W4382728044 hasConcept C159985019 @default.
- W4382728044 hasConcept C176933379 @default.
- W4382728044 hasConcept C187320778 @default.
- W4382728044 hasConcept C187530423 @default.
- W4382728044 hasConcept C192562407 @default.
- W4382728044 hasConcept C21141959 @default.
- W4382728044 hasConcept C2778517922 @default.
- W4382728044 hasConcept C2992277244 @default.
- W4382728044 hasConcept C32568104 @default.
- W4382728044 hasConcept C41151612 @default.
- W4382728044 hasConcept C66938386 @default.
- W4382728044 hasConcept C96035792 @default.
- W4382728044 hasConceptScore W4382728044C111368507 @default.
- W4382728044 hasConceptScore W4382728044C127313418 @default.