Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382728181> ?p ?o ?g. }
- W4382728181 endingPage "14365" @default.
- W4382728181 startingPage "14356" @default.
- W4382728181 abstract "Due to the prominent time-delay problem in the data characteristics of the cement grinding process, traditional soft-sensing models are difficult to effectively deal with this problem, leading to low measurement accuracy. We propose a soft-sensing method based on Multistep Time Extraction Network (MTENet). This method can effectively handle the time-delay problem, thus realizing the accurate soft-sensing of the cement-specific surface area. The encoder contains a new time feature extraction unit we proposed, which can effectively solve the time-delay problem of feature data through a clever combination with ConvLSTM. We also introduce parallel units to make the network aware of the surface area values. In the decoder part, we adopt the method of concatenating parallel features to ensure the accuracy of the final decoding result. Compared with some representative models on real data, the experimental results show that MTENet has a higher accuracy in cement-specific surface area soft-sensing." @default.
- W4382728181 created "2023-07-01" @default.
- W4382728181 creator A5012328712 @default.
- W4382728181 creator A5014558582 @default.
- W4382728181 creator A5022934107 @default.
- W4382728181 creator A5028273122 @default.
- W4382728181 creator A5040554547 @default.
- W4382728181 creator A5071783779 @default.
- W4382728181 date "2023-07-01" @default.
- W4382728181 modified "2023-10-17" @default.
- W4382728181 title "A Soft-Sensing Model of Cement-Specific Surface Area Based on MTENet" @default.
- W4382728181 cites W2012820458 @default.
- W4382728181 cites W2023347674 @default.
- W4382728181 cites W2037521205 @default.
- W4382728181 cites W2064675550 @default.
- W4382728181 cites W2094475848 @default.
- W4382728181 cites W2102131645 @default.
- W4382728181 cites W2139873630 @default.
- W4382728181 cites W2521249723 @default.
- W4382728181 cites W2746447521 @default.
- W4382728181 cites W2752782242 @default.
- W4382728181 cites W2786583476 @default.
- W4382728181 cites W2908283063 @default.
- W4382728181 cites W3034971973 @default.
- W4382728181 cites W3045997366 @default.
- W4382728181 cites W3107314600 @default.
- W4382728181 cites W3128560880 @default.
- W4382728181 cites W3159952717 @default.
- W4382728181 cites W3171438403 @default.
- W4382728181 cites W3213102846 @default.
- W4382728181 cites W3217308177 @default.
- W4382728181 cites W4212854774 @default.
- W4382728181 cites W4224979735 @default.
- W4382728181 cites W4226226325 @default.
- W4382728181 cites W4256293882 @default.
- W4382728181 cites W4300851339 @default.
- W4382728181 doi "https://doi.org/10.1109/jsen.2023.3273822" @default.
- W4382728181 hasPublicationYear "2023" @default.
- W4382728181 type Work @default.
- W4382728181 citedByCount "0" @default.
- W4382728181 crossrefType "journal-article" @default.
- W4382728181 hasAuthorship W4382728181A5012328712 @default.
- W4382728181 hasAuthorship W4382728181A5014558582 @default.
- W4382728181 hasAuthorship W4382728181A5022934107 @default.
- W4382728181 hasAuthorship W4382728181A5028273122 @default.
- W4382728181 hasAuthorship W4382728181A5040554547 @default.
- W4382728181 hasAuthorship W4382728181A5071783779 @default.
- W4382728181 hasConcept C111919701 @default.
- W4382728181 hasConcept C11413529 @default.
- W4382728181 hasConcept C115575686 @default.
- W4382728181 hasConcept C118505674 @default.
- W4382728181 hasConcept C124101348 @default.
- W4382728181 hasConcept C138885662 @default.
- W4382728181 hasConcept C154945302 @default.
- W4382728181 hasConcept C2524010 @default.
- W4382728181 hasConcept C2776401178 @default.
- W4382728181 hasConcept C2776799497 @default.
- W4382728181 hasConcept C33923547 @default.
- W4382728181 hasConcept C41008148 @default.
- W4382728181 hasConcept C41895202 @default.
- W4382728181 hasConcept C52622490 @default.
- W4382728181 hasConcept C57273362 @default.
- W4382728181 hasConcept C79403827 @default.
- W4382728181 hasConcept C98045186 @default.
- W4382728181 hasConceptScore W4382728181C111919701 @default.
- W4382728181 hasConceptScore W4382728181C11413529 @default.
- W4382728181 hasConceptScore W4382728181C115575686 @default.
- W4382728181 hasConceptScore W4382728181C118505674 @default.
- W4382728181 hasConceptScore W4382728181C124101348 @default.
- W4382728181 hasConceptScore W4382728181C138885662 @default.
- W4382728181 hasConceptScore W4382728181C154945302 @default.
- W4382728181 hasConceptScore W4382728181C2524010 @default.
- W4382728181 hasConceptScore W4382728181C2776401178 @default.
- W4382728181 hasConceptScore W4382728181C2776799497 @default.
- W4382728181 hasConceptScore W4382728181C33923547 @default.
- W4382728181 hasConceptScore W4382728181C41008148 @default.
- W4382728181 hasConceptScore W4382728181C41895202 @default.
- W4382728181 hasConceptScore W4382728181C52622490 @default.
- W4382728181 hasConceptScore W4382728181C57273362 @default.
- W4382728181 hasConceptScore W4382728181C79403827 @default.
- W4382728181 hasConceptScore W4382728181C98045186 @default.
- W4382728181 hasFunder F4320321001 @default.
- W4382728181 hasFunder F4320322163 @default.
- W4382728181 hasIssue "13" @default.
- W4382728181 hasLocation W43827281811 @default.
- W4382728181 hasOpenAccess W4382728181 @default.
- W4382728181 hasPrimaryLocation W43827281811 @default.
- W4382728181 hasRelatedWork W1950712214 @default.
- W4382728181 hasRelatedWork W2056851291 @default.
- W4382728181 hasRelatedWork W2546942002 @default.
- W4382728181 hasRelatedWork W3015928229 @default.
- W4382728181 hasRelatedWork W3023607346 @default.
- W4382728181 hasRelatedWork W3128690020 @default.
- W4382728181 hasRelatedWork W4210656569 @default.
- W4382728181 hasRelatedWork W4210922983 @default.
- W4382728181 hasRelatedWork W4281689716 @default.
- W4382728181 hasRelatedWork W4320802741 @default.
- W4382728181 hasVolume "23" @default.