Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382763242> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4382763242 endingPage "e8" @default.
- W4382763242 startingPage "e8" @default.
- W4382763242 abstract "INTRODUCTION: Cardiac Vascular Disease (CVD) is determined to be the most prevailing disease all over the globe specifically in the case of elderly persons. Among various cardiac disease, CVD account for major mortality all over the globe. Diagnosis of cardiac disease at an early stage is mandatory to reduce the rate of mortality. Still, there is no availability of skilled specialists even in case of developed countries for accurate diagnosis. OBJECTIVES: Achieving automated and accurate diagnosis, computer vision based methods that functions with the help of AI techniques are focused on by researchers. In this current research automated CVD prediction model is designed using a deep learning approach. METHODS: ECG image dataset is utilized in this proposed CVD prediction model. Initially, the Non-ST-elevation myocardial infarction (NSTEMI) ECG data collected from the healthcare centre is taken as input. This input ECG image is converted into a signal and further, it is segmented using the sliding window segmentation technique. Then, using segmented signal QRS peak detection is achieved using Elephant Herd Optimization (EHO) algorithm. From the peak, detected signal features are extracted using Heart Rate Variability (HRV) analysis. Following that the extracted features are sent as input into the Deep Belief Network (DBN) classifier to predict CVD patients. RESULTS: The proposed CVD prediction model is implemented and some of the performance metrics are calculated. Accuracy, error, precision, sensitivity and specificity attained by the proposed model using the second dataset are 95%, 5%. 96%, 94% and 96%. Results showed that the functioning of proposed CVD prediction model is better when compared with other existing techniques. CONCLUSION: Based on this analysis it can be revealed that accurate and timely CVD prediction can be achieved with a lessor error rate. Further, this proposed model can be used in real time healthcare application by collecting NSTEMI ECG signal from patients." @default.
- W4382763242 created "2023-07-01" @default.
- W4382763242 creator A5081582943 @default.
- W4382763242 creator A5092372314 @default.
- W4382763242 date "2023-05-04" @default.
- W4382763242 modified "2023-10-16" @default.
- W4382763242 title "Deep Belief Neural Network Based Automatic CVD Prediction Using Adaptive Sliding Window Technique" @default.
- W4382763242 cites W2081856525 @default.
- W4382763242 cites W2532144455 @default.
- W4382763242 cites W2620656322 @default.
- W4382763242 cites W2766953635 @default.
- W4382763242 cites W2768544418 @default.
- W4382763242 cites W2770980084 @default.
- W4382763242 cites W2781924583 @default.
- W4382763242 cites W2889838428 @default.
- W4382763242 cites W2922490081 @default.
- W4382763242 cites W2939574265 @default.
- W4382763242 cites W2954418827 @default.
- W4382763242 cites W2963565281 @default.
- W4382763242 cites W2973886591 @default.
- W4382763242 cites W2978471372 @default.
- W4382763242 cites W2999259076 @default.
- W4382763242 cites W3008330356 @default.
- W4382763242 cites W3011212210 @default.
- W4382763242 cites W3019886164 @default.
- W4382763242 cites W3044179938 @default.
- W4382763242 cites W3085439927 @default.
- W4382763242 cites W3103448416 @default.
- W4382763242 cites W3122804080 @default.
- W4382763242 cites W3127471705 @default.
- W4382763242 cites W3131008667 @default.
- W4382763242 cites W3133554815 @default.
- W4382763242 cites W3166630818 @default.
- W4382763242 cites W3170826323 @default.
- W4382763242 cites W3185043298 @default.
- W4382763242 cites W3186028383 @default.
- W4382763242 cites W3199623487 @default.
- W4382763242 cites W4205267589 @default.
- W4382763242 cites W4206134761 @default.
- W4382763242 cites W4220815060 @default.
- W4382763242 cites W4292168379 @default.
- W4382763242 doi "https://doi.org/10.4108/eetsis.v10i3.2891" @default.
- W4382763242 hasPublicationYear "2023" @default.
- W4382763242 type Work @default.
- W4382763242 citedByCount "0" @default.
- W4382763242 crossrefType "journal-article" @default.
- W4382763242 hasAuthorship W4382763242A5081582943 @default.
- W4382763242 hasAuthorship W4382763242A5092372314 @default.
- W4382763242 hasBestOaLocation W43827632421 @default.
- W4382763242 hasConcept C102392041 @default.
- W4382763242 hasConcept C108583219 @default.
- W4382763242 hasConcept C111919701 @default.
- W4382763242 hasConcept C119857082 @default.
- W4382763242 hasConcept C153180895 @default.
- W4382763242 hasConcept C154945302 @default.
- W4382763242 hasConcept C2778751112 @default.
- W4382763242 hasConcept C41008148 @default.
- W4382763242 hasConcept C50644808 @default.
- W4382763242 hasConcept C89600930 @default.
- W4382763242 hasConcept C95623464 @default.
- W4382763242 hasConcept C97385483 @default.
- W4382763242 hasConceptScore W4382763242C102392041 @default.
- W4382763242 hasConceptScore W4382763242C108583219 @default.
- W4382763242 hasConceptScore W4382763242C111919701 @default.
- W4382763242 hasConceptScore W4382763242C119857082 @default.
- W4382763242 hasConceptScore W4382763242C153180895 @default.
- W4382763242 hasConceptScore W4382763242C154945302 @default.
- W4382763242 hasConceptScore W4382763242C2778751112 @default.
- W4382763242 hasConceptScore W4382763242C41008148 @default.
- W4382763242 hasConceptScore W4382763242C50644808 @default.
- W4382763242 hasConceptScore W4382763242C89600930 @default.
- W4382763242 hasConceptScore W4382763242C95623464 @default.
- W4382763242 hasConceptScore W4382763242C97385483 @default.
- W4382763242 hasLocation W43827632421 @default.
- W4382763242 hasOpenAccess W4382763242 @default.
- W4382763242 hasPrimaryLocation W43827632421 @default.
- W4382763242 hasRelatedWork W2567271240 @default.
- W4382763242 hasRelatedWork W2741836081 @default.
- W4382763242 hasRelatedWork W2766146978 @default.
- W4382763242 hasRelatedWork W2919358988 @default.
- W4382763242 hasRelatedWork W2955124940 @default.
- W4382763242 hasRelatedWork W2991591812 @default.
- W4382763242 hasRelatedWork W2997541400 @default.
- W4382763242 hasRelatedWork W3123344745 @default.
- W4382763242 hasRelatedWork W3196183652 @default.
- W4382763242 hasRelatedWork W4210841218 @default.
- W4382763242 isParatext "false" @default.
- W4382763242 isRetracted "false" @default.
- W4382763242 workType "article" @default.