Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382765778> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4382765778 endingPage "558" @default.
- W4382765778 startingPage "558" @default.
- W4382765778 abstract "<p class=Abstracttitle>A financial time series is chaotic and non-stationary in nature, and predicting it outcomes is a very complex and challenging task. In this research, the theory of chaos, Long Short-Term Memory (LSTM), and Polynomial Regression (PR) are used in tandem to create a novel financial time series prediction hybrid, Chaos+LSTM+PR. The first step in this hybrid will determine whether or not a financial time series contains chaos. Following that, the chaos in the time series is modeled using Chaos Theory. The modeled time series is fed into the LSTM to obtain initial predictions. The error series obtained from LSTM predictions is fitted by PR to obtain error predictions. The error predictions and initial predictions from LSTM are combined to obtain final predictions. The effectiveness of this hybrid is examined by three types of financial time series (Chaos+LSTM+PR), including stock market indices (S&P 500, Nifty 50, Shanghai Composite), commodity prices (gold, crude oil, soya beans), and foreign exchange rates (INR/USD, JPY/USD, SGD/USD). The results show that the proposed hybrid outperforms ARIMA (autoregressive integrated moving average), Prophet, CART (Classification and Regression Tree), RF (Random Forest), LSTM, Chaos+CART, Chaos+CART, and Chaos+LSTM. The results are also checked for statistical significance.</p>" @default.
- W4382765778 created "2023-07-01" @default.
- W4382765778 creator A5003210845 @default.
- W4382765778 creator A5061523283 @default.
- W4382765778 creator A5069626990 @default.
- W4382765778 date "2023-05-04" @default.
- W4382765778 modified "2023-09-28" @default.
- W4382765778 title "Financial time series prediction using deep computing approaches" @default.
- W4382765778 doi "https://doi.org/10.32629/jai.v6i1.558" @default.
- W4382765778 hasPublicationYear "2023" @default.
- W4382765778 type Work @default.
- W4382765778 citedByCount "0" @default.
- W4382765778 crossrefType "journal-article" @default.
- W4382765778 hasAuthorship W4382765778A5003210845 @default.
- W4382765778 hasAuthorship W4382765778A5061523283 @default.
- W4382765778 hasAuthorship W4382765778A5069626990 @default.
- W4382765778 hasBestOaLocation W43827657781 @default.
- W4382765778 hasConcept C10138342 @default.
- W4382765778 hasConcept C11413529 @default.
- W4382765778 hasConcept C119857082 @default.
- W4382765778 hasConcept C143724316 @default.
- W4382765778 hasConcept C149782125 @default.
- W4382765778 hasConcept C151406439 @default.
- W4382765778 hasConcept C151730666 @default.
- W4382765778 hasConcept C154945302 @default.
- W4382765778 hasConcept C159877910 @default.
- W4382765778 hasConcept C162324750 @default.
- W4382765778 hasConcept C24338571 @default.
- W4382765778 hasConcept C2777052490 @default.
- W4382765778 hasConcept C33923547 @default.
- W4382765778 hasConcept C41008148 @default.
- W4382765778 hasConcept C86803240 @default.
- W4382765778 hasConcept C92866567 @default.
- W4382765778 hasConceptScore W4382765778C10138342 @default.
- W4382765778 hasConceptScore W4382765778C11413529 @default.
- W4382765778 hasConceptScore W4382765778C119857082 @default.
- W4382765778 hasConceptScore W4382765778C143724316 @default.
- W4382765778 hasConceptScore W4382765778C149782125 @default.
- W4382765778 hasConceptScore W4382765778C151406439 @default.
- W4382765778 hasConceptScore W4382765778C151730666 @default.
- W4382765778 hasConceptScore W4382765778C154945302 @default.
- W4382765778 hasConceptScore W4382765778C159877910 @default.
- W4382765778 hasConceptScore W4382765778C162324750 @default.
- W4382765778 hasConceptScore W4382765778C24338571 @default.
- W4382765778 hasConceptScore W4382765778C2777052490 @default.
- W4382765778 hasConceptScore W4382765778C33923547 @default.
- W4382765778 hasConceptScore W4382765778C41008148 @default.
- W4382765778 hasConceptScore W4382765778C86803240 @default.
- W4382765778 hasConceptScore W4382765778C92866567 @default.
- W4382765778 hasIssue "1" @default.
- W4382765778 hasLocation W43827657781 @default.
- W4382765778 hasOpenAccess W4382765778 @default.
- W4382765778 hasPrimaryLocation W43827657781 @default.
- W4382765778 hasRelatedWork W1506033924 @default.
- W4382765778 hasRelatedWork W2043623340 @default.
- W4382765778 hasRelatedWork W2073847544 @default.
- W4382765778 hasRelatedWork W2167381651 @default.
- W4382765778 hasRelatedWork W2391359722 @default.
- W4382765778 hasRelatedWork W2906471315 @default.
- W4382765778 hasRelatedWork W3122725606 @default.
- W4382765778 hasRelatedWork W4317542754 @default.
- W4382765778 hasRelatedWork W621671069 @default.
- W4382765778 hasRelatedWork W81705085 @default.
- W4382765778 hasVolume "6" @default.
- W4382765778 isParatext "false" @default.
- W4382765778 isRetracted "false" @default.
- W4382765778 workType "article" @default.