Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382775992> ?p ?o ?g. }
- W4382775992 endingPage "139361" @default.
- W4382775992 startingPage "139361" @default.
- W4382775992 abstract "Implementing effective environmental management strategies requires a comprehensive understanding of the chemical composition of environmental pollutants, particularly in complex mixtures. Utilizing innovative analytical techniques, such as high-resolution mass spectrometry and predictive retention index models, can provide valuable insights into the molecular structures of environmental contaminants. Liquid Chromatography-High-Resolution Mass Spectrometry is a powerful tool for the identification of isomeric structures in complex samples. However, there are some limitations that can prevent accurate isomeric structure identification, particularly in cases where the isomers have similar mass and fragmentation patterns. Liquid chromatographic retention, determined by the size, shape, and polarity of the analyte and its interactions with the stationary phase, contains valuable 3D structural information that is vastly underutilized. Therefore, a predictive retention index model is developed which is transferrable to LC-HRMS systems and can assist in the structural elucidation of unknowns. The approach is currently restricted to carbon, hydrogen, and oxygen-based molecules <500 g mol-1. The methodology facilitates the acceptance of accurate structural formulas and the exclusion of erroneous hypothetical structural representations by leveraging retention time estimations, thereby providing a permissible tolerance range for a given elemental composition and experimental retention time. This approach serves as a proof of concept for the development of a Quantitative Structure-Retention Relationship model using a generic gradient LC approach. The use of a widely used reversed-phase (U)HPLC column and a relatively large set of training (101) and test compounds (14) demonstrates the feasibility and potential applicability of this approach for predicting the retention behaviour of compounds in complex mixtures. By providing a standard operating procedure, this approach can be easily replicated and applied to various analytical challenges, further supporting its potential for broader implementation." @default.
- W4382775992 created "2023-07-02" @default.
- W4382775992 creator A5017654984 @default.
- W4382775992 creator A5032281205 @default.
- W4382775992 creator A5044352603 @default.
- W4382775992 creator A5069909583 @default.
- W4382775992 creator A5070983089 @default.
- W4382775992 date "2023-10-01" @default.
- W4382775992 modified "2023-10-04" @default.
- W4382775992 title "Facilitating structural elucidation of small environmental solutes in RPLC-HRMS by retention index prediction" @default.
- W4382775992 cites W1971394510 @default.
- W4382775992 cites W1994654653 @default.
- W4382775992 cites W2003766402 @default.
- W4382775992 cites W2005262804 @default.
- W4382775992 cites W2010068197 @default.
- W4382775992 cites W2019447412 @default.
- W4382775992 cites W2028193319 @default.
- W4382775992 cites W2028705141 @default.
- W4382775992 cites W2041059943 @default.
- W4382775992 cites W2049741347 @default.
- W4382775992 cites W2059327215 @default.
- W4382775992 cites W2060243984 @default.
- W4382775992 cites W2066454228 @default.
- W4382775992 cites W2067083286 @default.
- W4382775992 cites W2071551353 @default.
- W4382775992 cites W2074745966 @default.
- W4382775992 cites W2078077912 @default.
- W4382775992 cites W2153183098 @default.
- W4382775992 cites W2154903095 @default.
- W4382775992 cites W2203559469 @default.
- W4382775992 cites W2276014805 @default.
- W4382775992 cites W2289191408 @default.
- W4382775992 cites W2467309505 @default.
- W4382775992 cites W2767955262 @default.
- W4382775992 cites W2787261070 @default.
- W4382775992 cites W2788226441 @default.
- W4382775992 cites W2788797421 @default.
- W4382775992 cites W2790580419 @default.
- W4382775992 cites W2800588457 @default.
- W4382775992 cites W2806376870 @default.
- W4382775992 cites W2806463412 @default.
- W4382775992 cites W2808863439 @default.
- W4382775992 cites W2810239295 @default.
- W4382775992 cites W2887566220 @default.
- W4382775992 cites W2911323309 @default.
- W4382775992 cites W2927641843 @default.
- W4382775992 cites W2973205148 @default.
- W4382775992 cites W2979568128 @default.
- W4382775992 cites W2999001809 @default.
- W4382775992 cites W3009862931 @default.
- W4382775992 cites W3086175898 @default.
- W4382775992 cites W3094450043 @default.
- W4382775992 cites W3102123740 @default.
- W4382775992 cites W3139660573 @default.
- W4382775992 cites W3149106025 @default.
- W4382775992 cites W3153046048 @default.
- W4382775992 cites W3159504508 @default.
- W4382775992 cites W3188809365 @default.
- W4382775992 cites W4205633310 @default.
- W4382775992 cites W4293577525 @default.
- W4382775992 cites W4324143286 @default.
- W4382775992 doi "https://doi.org/10.1016/j.chemosphere.2023.139361" @default.
- W4382775992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37392796" @default.
- W4382775992 hasPublicationYear "2023" @default.
- W4382775992 type Work @default.
- W4382775992 citedByCount "0" @default.
- W4382775992 crossrefType "journal-article" @default.
- W4382775992 hasAuthorship W4382775992A5017654984 @default.
- W4382775992 hasAuthorship W4382775992A5032281205 @default.
- W4382775992 hasAuthorship W4382775992A5044352603 @default.
- W4382775992 hasAuthorship W4382775992A5069909583 @default.
- W4382775992 hasAuthorship W4382775992A5070983089 @default.
- W4382775992 hasConcept C10390740 @default.
- W4382775992 hasConcept C123460561 @default.
- W4382775992 hasConcept C127413603 @default.
- W4382775992 hasConcept C138268822 @default.
- W4382775992 hasConcept C154945302 @default.
- W4382775992 hasConcept C162356407 @default.
- W4382775992 hasConcept C183696295 @default.
- W4382775992 hasConcept C185592680 @default.
- W4382775992 hasConcept C186060115 @default.
- W4382775992 hasConcept C3020018676 @default.
- W4382775992 hasConcept C41008148 @default.
- W4382775992 hasConcept C43617362 @default.
- W4382775992 hasConcept C85666147 @default.
- W4382775992 hasConcept C86803240 @default.
- W4382775992 hasConceptScore W4382775992C10390740 @default.
- W4382775992 hasConceptScore W4382775992C123460561 @default.
- W4382775992 hasConceptScore W4382775992C127413603 @default.
- W4382775992 hasConceptScore W4382775992C138268822 @default.
- W4382775992 hasConceptScore W4382775992C154945302 @default.
- W4382775992 hasConceptScore W4382775992C162356407 @default.
- W4382775992 hasConceptScore W4382775992C183696295 @default.
- W4382775992 hasConceptScore W4382775992C185592680 @default.
- W4382775992 hasConceptScore W4382775992C186060115 @default.
- W4382775992 hasConceptScore W4382775992C3020018676 @default.
- W4382775992 hasConceptScore W4382775992C41008148 @default.
- W4382775992 hasConceptScore W4382775992C43617362 @default.