Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382786918> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4382786918 endingPage "46" @default.
- W4382786918 startingPage "32" @default.
- W4382786918 abstract "A marine engine room is a complex system in which many different subsystems are interacting with each other. At the center of this system is the main diesel engine which produces the propulsion force. Many other components such as compressed air, cooling, heating, lubricating oil, fuel, and pumping systems act as auxiliary machines to the main engine. Automation of many functions in the engine room is starting to play an important role in new generation ships to provide better control using sensors monitoring the engine and its environment. Sensors exist in the current generation ships, but engineers evaluate the sensor data for the presence of any problems. Maintenance actions are taken based on these manual analyses or regular maintenance is carried out at times determined by manufacturers, whether such actions are needed or not. With machine learning, it is possible to develop an algorithm using past evaluations made by engineers. Recent studies show that highly accurate results can be obtained using machine learning methods when there is sufficient data. In this study, we develop new learning-based algorithms and evaluate them on data obtained from a realistic ship engine room simulator. Data for a predetermined set of parameters of a high-power diesel engine were collected and analyzed for their role in a set of fault situations. These fault conditions and the associated sensor data are used to train a set of classifiers achieving fault detection up to 99% accuracy. These are promising results in preventing future damage to the engine or its supporting components by predicting failures before they occur." @default.
- W4382786918 created "2023-07-02" @default.
- W4382786918 creator A5006344081 @default.
- W4382786918 creator A5010447124 @default.
- W4382786918 creator A5040247764 @default.
- W4382786918 date "2023-06-29" @default.
- W4382786918 modified "2023-10-18" @default.
- W4382786918 title "Condition Monitoring and Fault Diagnosis of a Marine Diesel Engine with Machine Learning Techniques" @default.
- W4382786918 doi "https://doi.org/10.31217/p.37.1.4" @default.
- W4382786918 hasPublicationYear "2023" @default.
- W4382786918 type Work @default.
- W4382786918 citedByCount "0" @default.
- W4382786918 crossrefType "journal-article" @default.
- W4382786918 hasAuthorship W4382786918A5006344081 @default.
- W4382786918 hasAuthorship W4382786918A5010447124 @default.
- W4382786918 hasAuthorship W4382786918A5040247764 @default.
- W4382786918 hasBestOaLocation W43827869181 @default.
- W4382786918 hasConcept C1034443 @default.
- W4382786918 hasConcept C115901376 @default.
- W4382786918 hasConcept C119599485 @default.
- W4382786918 hasConcept C127313418 @default.
- W4382786918 hasConcept C127413603 @default.
- W4382786918 hasConcept C133731056 @default.
- W4382786918 hasConcept C146978453 @default.
- W4382786918 hasConcept C152745839 @default.
- W4382786918 hasConcept C154945302 @default.
- W4382786918 hasConcept C165205528 @default.
- W4382786918 hasConcept C171146098 @default.
- W4382786918 hasConcept C172707124 @default.
- W4382786918 hasConcept C175551986 @default.
- W4382786918 hasConcept C177264268 @default.
- W4382786918 hasConcept C199360897 @default.
- W4382786918 hasConcept C2775846686 @default.
- W4382786918 hasConcept C2776439729 @default.
- W4382786918 hasConcept C2780804531 @default.
- W4382786918 hasConcept C41008148 @default.
- W4382786918 hasConcept C505695854 @default.
- W4382786918 hasConcept C78519656 @default.
- W4382786918 hasConceptScore W4382786918C1034443 @default.
- W4382786918 hasConceptScore W4382786918C115901376 @default.
- W4382786918 hasConceptScore W4382786918C119599485 @default.
- W4382786918 hasConceptScore W4382786918C127313418 @default.
- W4382786918 hasConceptScore W4382786918C127413603 @default.
- W4382786918 hasConceptScore W4382786918C133731056 @default.
- W4382786918 hasConceptScore W4382786918C146978453 @default.
- W4382786918 hasConceptScore W4382786918C152745839 @default.
- W4382786918 hasConceptScore W4382786918C154945302 @default.
- W4382786918 hasConceptScore W4382786918C165205528 @default.
- W4382786918 hasConceptScore W4382786918C171146098 @default.
- W4382786918 hasConceptScore W4382786918C172707124 @default.
- W4382786918 hasConceptScore W4382786918C175551986 @default.
- W4382786918 hasConceptScore W4382786918C177264268 @default.
- W4382786918 hasConceptScore W4382786918C199360897 @default.
- W4382786918 hasConceptScore W4382786918C2775846686 @default.
- W4382786918 hasConceptScore W4382786918C2776439729 @default.
- W4382786918 hasConceptScore W4382786918C2780804531 @default.
- W4382786918 hasConceptScore W4382786918C41008148 @default.
- W4382786918 hasConceptScore W4382786918C505695854 @default.
- W4382786918 hasConceptScore W4382786918C78519656 @default.
- W4382786918 hasIssue "1" @default.
- W4382786918 hasLocation W43827869181 @default.
- W4382786918 hasOpenAccess W4382786918 @default.
- W4382786918 hasPrimaryLocation W43827869181 @default.
- W4382786918 hasRelatedWork W1973911083 @default.
- W4382786918 hasRelatedWork W2014625144 @default.
- W4382786918 hasRelatedWork W2127621424 @default.
- W4382786918 hasRelatedWork W2265409623 @default.
- W4382786918 hasRelatedWork W2370469177 @default.
- W4382786918 hasRelatedWork W2383727060 @default.
- W4382786918 hasRelatedWork W2726556444 @default.
- W4382786918 hasRelatedWork W2980664642 @default.
- W4382786918 hasRelatedWork W3043089121 @default.
- W4382786918 hasRelatedWork W4256224204 @default.
- W4382786918 hasVolume "37" @default.
- W4382786918 isParatext "false" @default.
- W4382786918 isRetracted "false" @default.
- W4382786918 workType "article" @default.