Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382791800> ?p ?o ?g. }
- W4382791800 endingPage "3628" @default.
- W4382791800 startingPage "3611" @default.
- W4382791800 abstract "Abstract. Convective wind gusts (CGs) are usually related to thunderstorms, and they may cause great structural damage and serious hazards, such as train derailment, service interruption, and building collapse. Due to the small-scale and nonstationary nature of CGs, reliable CG nowcasting with high spatial and temporal resolutions has remained unattainable. In this study, a novel nowcasting model based on deep learning – namely, CGsNet – is developed for 0–2 h lead times of quantitative CG nowcasting, achieving minute–kilometer-level forecasts. CGsNet is a physics-constrained model established by training on large corpora of average surface wind speed (ASWS) and radar observations; it can produce realistic and spatiotemporally consistent ASWS predictions in CG events. By combining the gust factor (1.77, the ratio of the observed peak wind gust speed (PWGS) to the ASWS) with the ASWS predictions, the PWGS forecasts are estimated with a spatial resolution of 0.01∘ × 0.01∘ and a 6 min temporal resolution. CGsNet is shown to be effective, and it has an essential advantage in learning the spatiotemporal features of CGs. In addition, quantitative evaluation experiments indicate that CGsNet exhibits higher generalization performance for CGs than the traditional nowcasting method based on numerical weather prediction models. CG-nowcasting technology can be applied to provide real-time quantitative CG forecasts." @default.
- W4382791800 created "2023-07-02" @default.
- W4382791800 creator A5004008759 @default.
- W4382791800 creator A5015945022 @default.
- W4382791800 creator A5026394330 @default.
- W4382791800 creator A5041369505 @default.
- W4382791800 creator A5058811939 @default.
- W4382791800 creator A5067130046 @default.
- W4382791800 creator A5068535880 @default.
- W4382791800 date "2023-06-30" @default.
- W4382791800 modified "2023-10-02" @default.
- W4382791800 title "Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm" @default.
- W4382791800 cites W1555849313 @default.
- W4382791800 cites W1964728053 @default.
- W4382791800 cites W1967874657 @default.
- W4382791800 cites W1988226474 @default.
- W4382791800 cites W2024692966 @default.
- W4382791800 cites W2060430093 @default.
- W4382791800 cites W2071025563 @default.
- W4382791800 cites W2076318482 @default.
- W4382791800 cites W2129685568 @default.
- W4382791800 cites W2176002744 @default.
- W4382791800 cites W2521434474 @default.
- W4382791800 cites W2580446538 @default.
- W4382791800 cites W2603483840 @default.
- W4382791800 cites W2611057193 @default.
- W4382791800 cites W2762876524 @default.
- W4382791800 cites W2770594110 @default.
- W4382791800 cites W2870499156 @default.
- W4382791800 cites W2885611555 @default.
- W4382791800 cites W2914747925 @default.
- W4382791800 cites W2943446701 @default.
- W4382791800 cites W2985739459 @default.
- W4382791800 cites W3010027900 @default.
- W4382791800 cites W3016097621 @default.
- W4382791800 cites W3018121271 @default.
- W4382791800 cites W3021074443 @default.
- W4382791800 cites W3034426027 @default.
- W4382791800 cites W3082059999 @default.
- W4382791800 cites W3146366485 @default.
- W4382791800 cites W3160512123 @default.
- W4382791800 cites W3163993681 @default.
- W4382791800 cites W3195543658 @default.
- W4382791800 cites W4206968827 @default.
- W4382791800 cites W4210790504 @default.
- W4382791800 cites W4210954263 @default.
- W4382791800 cites W4211128811 @default.
- W4382791800 cites W629167550 @default.
- W4382791800 doi "https://doi.org/10.5194/gmd-16-3611-2023" @default.
- W4382791800 hasPublicationYear "2023" @default.
- W4382791800 type Work @default.
- W4382791800 citedByCount "1" @default.
- W4382791800 countsByYear W43827918002023 @default.
- W4382791800 crossrefType "journal-article" @default.
- W4382791800 hasAuthorship W4382791800A5004008759 @default.
- W4382791800 hasAuthorship W4382791800A5015945022 @default.
- W4382791800 hasAuthorship W4382791800A5026394330 @default.
- W4382791800 hasAuthorship W4382791800A5041369505 @default.
- W4382791800 hasAuthorship W4382791800A5058811939 @default.
- W4382791800 hasAuthorship W4382791800A5067130046 @default.
- W4382791800 hasAuthorship W4382791800A5068535880 @default.
- W4382791800 hasBestOaLocation W43827918001 @default.
- W4382791800 hasConcept C10899652 @default.
- W4382791800 hasConcept C11413529 @default.
- W4382791800 hasConcept C119666444 @default.
- W4382791800 hasConcept C121332964 @default.
- W4382791800 hasConcept C153294291 @default.
- W4382791800 hasConcept C154945302 @default.
- W4382791800 hasConcept C192932206 @default.
- W4382791800 hasConcept C205649164 @default.
- W4382791800 hasConcept C2781013037 @default.
- W4382791800 hasConcept C39432304 @default.
- W4382791800 hasConcept C41008148 @default.
- W4382791800 hasConcept C554190296 @default.
- W4382791800 hasConcept C62520636 @default.
- W4382791800 hasConcept C76155785 @default.
- W4382791800 hasConcept C80316258 @default.
- W4382791800 hasConcept C83002819 @default.
- W4382791800 hasConceptScore W4382791800C10899652 @default.
- W4382791800 hasConceptScore W4382791800C11413529 @default.
- W4382791800 hasConceptScore W4382791800C119666444 @default.
- W4382791800 hasConceptScore W4382791800C121332964 @default.
- W4382791800 hasConceptScore W4382791800C153294291 @default.
- W4382791800 hasConceptScore W4382791800C154945302 @default.
- W4382791800 hasConceptScore W4382791800C192932206 @default.
- W4382791800 hasConceptScore W4382791800C205649164 @default.
- W4382791800 hasConceptScore W4382791800C2781013037 @default.
- W4382791800 hasConceptScore W4382791800C39432304 @default.
- W4382791800 hasConceptScore W4382791800C41008148 @default.
- W4382791800 hasConceptScore W4382791800C554190296 @default.
- W4382791800 hasConceptScore W4382791800C62520636 @default.
- W4382791800 hasConceptScore W4382791800C76155785 @default.
- W4382791800 hasConceptScore W4382791800C80316258 @default.
- W4382791800 hasConceptScore W4382791800C83002819 @default.
- W4382791800 hasIssue "12" @default.
- W4382791800 hasLocation W43827918001 @default.
- W4382791800 hasLocation W43827918002 @default.
- W4382791800 hasOpenAccess W4382791800 @default.