Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382792869> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4382792869 abstract "ABSTRACT Seasonal peaks in infectious disease incidence put pressures on health services. Therefore, early warning of the timing and magnitude of peak activity during seasonal epidemics can provide information for public health practitioners to take appropriate action. Whilst many infectious diseases have predictable seasonality, newly emerging diseases and the impact of public health interventions can result in unprecedented seasonal activity. We propose a machine learning process for generating short-term forecasts, where models are selected based on their ability to correctly forecast peaks in activity and can be useful during the aforementioned atypical seasonal activity, in contrast to traditional modelling. We have validated our forecasts using typical and atypical seasonal activity, using respiratory syncytial virus (RSV) activity during 2019-2021 as an example. During the winter of 2020/21 the usual winter peak in RSV activity in England did not occur but was ‘deferred’ until the Spring of 2021. We compare a range of machine learning regression models, with alternate models including different independent variables, e.g. with or without seasonality or trend variables. We show that the best-fitting model which minimises daily forecast errors is not the best model for forecasting peaks when the selection criterion is based on peak timing and magnitude. Furthermore, we show that best-fitting models for typical seasons contain different variables to those for atypical black swan seasons. Specifically, including seasonality in models improves performance during typical seasons but worsens it for the atypical seasons. In conclusion, we have found that including seasonality in forecast models can result in overfitting, where the models are required to be used out-of-season or during atypical seasons." @default.
- W4382792869 created "2023-07-02" @default.
- W4382792869 creator A5033418897 @default.
- W4382792869 creator A5033763320 @default.
- W4382792869 creator A5077133020 @default.
- W4382792869 creator A5090104888 @default.
- W4382792869 date "2023-07-01" @default.
- W4382792869 modified "2023-10-14" @default.
- W4382792869 title "Machine learning forecasts for seasonal epidemic peaks: lessons learnt from an atypical respiratory syncytial virus season" @default.
- W4382792869 cites W1821462351 @default.
- W4382792869 cites W2008167522 @default.
- W4382792869 cites W2416818866 @default.
- W4382792869 cites W2843590901 @default.
- W4382792869 cites W2909758842 @default.
- W4382792869 cites W2912023657 @default.
- W4382792869 cites W2915675349 @default.
- W4382792869 cites W2917963204 @default.
- W4382792869 cites W2939567688 @default.
- W4382792869 cites W2951797113 @default.
- W4382792869 cites W2966324920 @default.
- W4382792869 cites W2970311917 @default.
- W4382792869 cites W3004762280 @default.
- W4382792869 cites W4205689774 @default.
- W4382792869 cites W4283720061 @default.
- W4382792869 cites W4285112588 @default.
- W4382792869 cites W4285141678 @default.
- W4382792869 cites W4295851471 @default.
- W4382792869 doi "https://doi.org/10.1101/2023.06.29.23291793" @default.
- W4382792869 hasPublicationYear "2023" @default.
- W4382792869 type Work @default.
- W4382792869 citedByCount "0" @default.
- W4382792869 crossrefType "posted-content" @default.
- W4382792869 hasAuthorship W4382792869A5033418897 @default.
- W4382792869 hasAuthorship W4382792869A5033763320 @default.
- W4382792869 hasAuthorship W4382792869A5077133020 @default.
- W4382792869 hasAuthorship W4382792869A5090104888 @default.
- W4382792869 hasBestOaLocation W43827928691 @default.
- W4382792869 hasConcept C105795698 @default.
- W4382792869 hasConcept C119857082 @default.
- W4382792869 hasConcept C125403950 @default.
- W4382792869 hasConcept C127313418 @default.
- W4382792869 hasConcept C149782125 @default.
- W4382792869 hasConcept C152877465 @default.
- W4382792869 hasConcept C205649164 @default.
- W4382792869 hasConcept C33923547 @default.
- W4382792869 hasConcept C39432304 @default.
- W4382792869 hasConcept C41008148 @default.
- W4382792869 hasConcept C49204034 @default.
- W4382792869 hasConcept C83546350 @default.
- W4382792869 hasConceptScore W4382792869C105795698 @default.
- W4382792869 hasConceptScore W4382792869C119857082 @default.
- W4382792869 hasConceptScore W4382792869C125403950 @default.
- W4382792869 hasConceptScore W4382792869C127313418 @default.
- W4382792869 hasConceptScore W4382792869C149782125 @default.
- W4382792869 hasConceptScore W4382792869C152877465 @default.
- W4382792869 hasConceptScore W4382792869C205649164 @default.
- W4382792869 hasConceptScore W4382792869C33923547 @default.
- W4382792869 hasConceptScore W4382792869C39432304 @default.
- W4382792869 hasConceptScore W4382792869C41008148 @default.
- W4382792869 hasConceptScore W4382792869C49204034 @default.
- W4382792869 hasConceptScore W4382792869C83546350 @default.
- W4382792869 hasLocation W43827928691 @default.
- W4382792869 hasOpenAccess W4382792869 @default.
- W4382792869 hasPrimaryLocation W43827928691 @default.
- W4382792869 hasRelatedWork W1980588930 @default.
- W4382792869 hasRelatedWork W2062105804 @default.
- W4382792869 hasRelatedWork W2080727847 @default.
- W4382792869 hasRelatedWork W2119696881 @default.
- W4382792869 hasRelatedWork W2899084033 @default.
- W4382792869 hasRelatedWork W2999452362 @default.
- W4382792869 hasRelatedWork W3021457118 @default.
- W4382792869 hasRelatedWork W4290879003 @default.
- W4382792869 hasRelatedWork W4366821931 @default.
- W4382792869 hasRelatedWork W2738033194 @default.
- W4382792869 isParatext "false" @default.
- W4382792869 isRetracted "false" @default.
- W4382792869 workType "article" @default.