Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382796249> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4382796249 endingPage "109789" @default.
- W4382796249 startingPage "109789" @default.
- W4382796249 abstract "Semantic labeling of coronary arterial segments in invasive coronary angiography (ICA) is important for automated assessment and report generation of coronary artery stenosis in computer-aided coronary artery disease (CAD) diagnosis. However, separating and identifying individual coronary arterial segments is challenging because morphological similarities of different branches on the coronary arterial tree and human-to-human variabilities exist. Inspired by the training procedure of interventional cardiologists for interpreting the structure of coronary arteries, we propose an association graph-based graph matching network (AGMN) for coronary arterial semantic labeling. We first extract the vascular tree from invasive coronary angiography (ICA) and convert it into multiple individual graphs. Then, an association graph is constructed from two individual graphs where each vertex represents the relationship between two arterial segments. Thus, we convert the arterial segment labeling task into a vertex classification task; ultimately, the semantic artery labeling becomes equivalent to identifying the artery-to-artery correspondence on graphs. More specifically, the AGMN extracts the vertex features by the embedding module using the association graph, aggregates the features from adjacent vertices and edges by graph convolution network, and decodes the features to generate the semantic mappings between arteries. By learning the mapping of arterial branches between two individual graphs, the unlabeled arterial segments are classified by the labeled segments to achieve semantic labeling. A dataset containing 263 ICAs was employed to train and validate the proposed model, and a five-fold cross-validation scheme was performed. Our AGMN model achieved an average accuracy of 0.8264, an average precision of 0.8276, an average recall of 0.8264, and an average F1-score of 0.8262, which significantly outperformed existing coronary artery semantic labeling methods. In conclusion, we have developed and validated a new algorithm with high accuracy, interpretability, and robustness for coronary artery semantic labeling on ICAs." @default.
- W4382796249 created "2023-07-02" @default.
- W4382796249 creator A5005634271 @default.
- W4382796249 creator A5010485021 @default.
- W4382796249 creator A5011937138 @default.
- W4382796249 creator A5011955671 @default.
- W4382796249 creator A5041604444 @default.
- W4382796249 creator A5075181003 @default.
- W4382796249 creator A5082306052 @default.
- W4382796249 date "2023-11-01" @default.
- W4382796249 modified "2023-10-04" @default.
- W4382796249 title "AGMN: Association Graph-based Graph Matching Network for Coronary Artery Semantic Labeling on Invasive Coronary Angiograms" @default.
- W4382796249 cites W1998363540 @default.
- W4382796249 cites W2013603106 @default.
- W4382796249 cites W2028153086 @default.
- W4382796249 cites W2053841470 @default.
- W4382796249 cites W2054644115 @default.
- W4382796249 cites W2084512390 @default.
- W4382796249 cites W2112878849 @default.
- W4382796249 cites W2116341502 @default.
- W4382796249 cites W2117935664 @default.
- W4382796249 cites W2160414137 @default.
- W4382796249 cites W2343970360 @default.
- W4382796249 cites W2399408088 @default.
- W4382796249 cites W2699957614 @default.
- W4382796249 cites W2903330639 @default.
- W4382796249 cites W2913705661 @default.
- W4382796249 cites W2979598282 @default.
- W4382796249 cites W3088799891 @default.
- W4382796249 cites W3161851957 @default.
- W4382796249 cites W3166201194 @default.
- W4382796249 cites W3186953906 @default.
- W4382796249 cites W4281491038 @default.
- W4382796249 cites W4290169394 @default.
- W4382796249 cites W4308057898 @default.
- W4382796249 doi "https://doi.org/10.1016/j.patcog.2023.109789" @default.
- W4382796249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37483334" @default.
- W4382796249 hasPublicationYear "2023" @default.
- W4382796249 type Work @default.
- W4382796249 citedByCount "2" @default.
- W4382796249 countsByYear W43827962492023 @default.
- W4382796249 crossrefType "journal-article" @default.
- W4382796249 hasAuthorship W4382796249A5005634271 @default.
- W4382796249 hasAuthorship W4382796249A5010485021 @default.
- W4382796249 hasAuthorship W4382796249A5011937138 @default.
- W4382796249 hasAuthorship W4382796249A5011955671 @default.
- W4382796249 hasAuthorship W4382796249A5041604444 @default.
- W4382796249 hasAuthorship W4382796249A5075181003 @default.
- W4382796249 hasAuthorship W4382796249A5082306052 @default.
- W4382796249 hasBestOaLocation W43827962492 @default.
- W4382796249 hasConcept C126322002 @default.
- W4382796249 hasConcept C132525143 @default.
- W4382796249 hasConcept C153180895 @default.
- W4382796249 hasConcept C154945302 @default.
- W4382796249 hasConcept C164705383 @default.
- W4382796249 hasConcept C2776820930 @default.
- W4382796249 hasConcept C2778213512 @default.
- W4382796249 hasConcept C41008148 @default.
- W4382796249 hasConcept C71924100 @default.
- W4382796249 hasConcept C80444323 @default.
- W4382796249 hasConceptScore W4382796249C126322002 @default.
- W4382796249 hasConceptScore W4382796249C132525143 @default.
- W4382796249 hasConceptScore W4382796249C153180895 @default.
- W4382796249 hasConceptScore W4382796249C154945302 @default.
- W4382796249 hasConceptScore W4382796249C164705383 @default.
- W4382796249 hasConceptScore W4382796249C2776820930 @default.
- W4382796249 hasConceptScore W4382796249C2778213512 @default.
- W4382796249 hasConceptScore W4382796249C41008148 @default.
- W4382796249 hasConceptScore W4382796249C71924100 @default.
- W4382796249 hasConceptScore W4382796249C80444323 @default.
- W4382796249 hasLocation W43827962491 @default.
- W4382796249 hasLocation W43827962492 @default.
- W4382796249 hasLocation W43827962493 @default.
- W4382796249 hasOpenAccess W4382796249 @default.
- W4382796249 hasPrimaryLocation W43827962491 @default.
- W4382796249 hasRelatedWork W1997290062 @default.
- W4382796249 hasRelatedWork W2080753067 @default.
- W4382796249 hasRelatedWork W2130977235 @default.
- W4382796249 hasRelatedWork W2347818059 @default.
- W4382796249 hasRelatedWork W2351880569 @default.
- W4382796249 hasRelatedWork W2354973750 @default.
- W4382796249 hasRelatedWork W2362808561 @default.
- W4382796249 hasRelatedWork W2409255037 @default.
- W4382796249 hasRelatedWork W3113925325 @default.
- W4382796249 hasRelatedWork W3031769266 @default.
- W4382796249 hasVolume "143" @default.
- W4382796249 isParatext "false" @default.
- W4382796249 isRetracted "false" @default.
- W4382796249 workType "article" @default.