Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382810367> ?p ?o ?g. }
- W4382810367 endingPage "100216" @default.
- W4382810367 startingPage "100216" @default.
- W4382810367 abstract "Transcriptome prediction models built with data from European-descent individuals are less accurate when applied to different populations because of differences in linkage disequilibrium patterns and allele frequencies. We hypothesized methods that leverage shared regulatory effects across different conditions, in this case, across different populations may improve cross-population transcriptome prediction. To test this hypothesis, we made transcriptome prediction models for use in transcriptome-wide association studies (TWAS) using different methods (Elastic Net, Joint-Tissue Imputation (JTI), Matrix eQTL, Multivariate Adaptive Shrinkage in R (MASHR), and Transcriptome-Integrated Genetic Association Resource (TIGAR)) and tested their out-of-sample transcriptome prediction accuracy in population-matched and cross-population scenarios. Additionally, to evaluate model applicability in TWAS, we integrated publicly available multi-ethnic genome-wide association study (GWAS) summary statistics from the Population Architecture using Genomics and Epidemiology Study (PAGE) and Pan-UK Biobank with our developed transcriptome prediction models. In regard to transcriptome prediction accuracy, MASHR models performed better or the same as other methods in both population-matched and cross-population transcriptome predictions. Furthermore, in multi-ethnic TWAS, MASHR models yielded more discoveries that replicate in both PAGE and PanUKBB across all methods analyzed, including loci previously mapped in GWAS and loci previously not found in GWAS. Overall, our study demonstrates the importance of using methods that benefit from different populations’ effect size estimates in order to improve TWAS for multi-ethnic or underrepresented populations." @default.
- W4382810367 created "2023-07-02" @default.
- W4382810367 creator A5010796183 @default.
- W4382810367 creator A5015477558 @default.
- W4382810367 creator A5018495347 @default.
- W4382810367 creator A5020279738 @default.
- W4382810367 creator A5024226928 @default.
- W4382810367 creator A5029044079 @default.
- W4382810367 creator A5040770914 @default.
- W4382810367 creator A5041895974 @default.
- W4382810367 creator A5042917463 @default.
- W4382810367 creator A5043791314 @default.
- W4382810367 creator A5057715705 @default.
- W4382810367 creator A5059301844 @default.
- W4382810367 creator A5067387552 @default.
- W4382810367 creator A5075695769 @default.
- W4382810367 creator A5083265318 @default.
- W4382810367 creator A5084668001 @default.
- W4382810367 date "2023-10-01" @default.
- W4382810367 modified "2023-10-17" @default.
- W4382810367 title "Multivariate adaptive shrinkage improves cross-population transcriptome prediction and association studies in underrepresented populations" @default.
- W4382810367 cites W2002732332 @default.
- W4382810367 cites W2019794729 @default.
- W4382810367 cites W2025943989 @default.
- W4382810367 cites W2052849118 @default.
- W4382810367 cites W2100697281 @default.
- W4382810367 cites W2122825543 @default.
- W4382810367 cites W2155496693 @default.
- W4382810367 cites W2156097706 @default.
- W4382810367 cites W2161633633 @default.
- W4382810367 cites W2209106767 @default.
- W4382810367 cites W2264585211 @default.
- W4382810367 cites W2759086237 @default.
- W4382810367 cites W2761275051 @default.
- W4382810367 cites W2785412624 @default.
- W4382810367 cites W2901303766 @default.
- W4382810367 cites W2929389474 @default.
- W4382810367 cites W2932671560 @default.
- W4382810367 cites W2934861239 @default.
- W4382810367 cites W2950153742 @default.
- W4382810367 cites W2951079876 @default.
- W4382810367 cites W2952013316 @default.
- W4382810367 cites W2953285308 @default.
- W4382810367 cites W3011376071 @default.
- W4382810367 cites W3012440143 @default.
- W4382810367 cites W3049649569 @default.
- W4382810367 cites W3088778932 @default.
- W4382810367 cites W3089716446 @default.
- W4382810367 cites W3108314563 @default.
- W4382810367 cites W3111061871 @default.
- W4382810367 cites W3126160703 @default.
- W4382810367 cites W3192811676 @default.
- W4382810367 cites W4221005810 @default.
- W4382810367 cites W4226067350 @default.
- W4382810367 cites W4229035861 @default.
- W4382810367 cites W4304698215 @default.
- W4382810367 cites W4328049762 @default.
- W4382810367 cites W4378212020 @default.
- W4382810367 doi "https://doi.org/10.1016/j.xhgg.2023.100216" @default.
- W4382810367 hasPublicationYear "2023" @default.
- W4382810367 type Work @default.
- W4382810367 citedByCount "0" @default.
- W4382810367 crossrefType "journal-article" @default.
- W4382810367 hasAuthorship W4382810367A5010796183 @default.
- W4382810367 hasAuthorship W4382810367A5015477558 @default.
- W4382810367 hasAuthorship W4382810367A5018495347 @default.
- W4382810367 hasAuthorship W4382810367A5020279738 @default.
- W4382810367 hasAuthorship W4382810367A5024226928 @default.
- W4382810367 hasAuthorship W4382810367A5029044079 @default.
- W4382810367 hasAuthorship W4382810367A5040770914 @default.
- W4382810367 hasAuthorship W4382810367A5041895974 @default.
- W4382810367 hasAuthorship W4382810367A5042917463 @default.
- W4382810367 hasAuthorship W4382810367A5043791314 @default.
- W4382810367 hasAuthorship W4382810367A5057715705 @default.
- W4382810367 hasAuthorship W4382810367A5059301844 @default.
- W4382810367 hasAuthorship W4382810367A5067387552 @default.
- W4382810367 hasAuthorship W4382810367A5075695769 @default.
- W4382810367 hasAuthorship W4382810367A5083265318 @default.
- W4382810367 hasAuthorship W4382810367A5084668001 @default.
- W4382810367 hasBestOaLocation W43828103671 @default.
- W4382810367 hasConcept C104317684 @default.
- W4382810367 hasConcept C106208931 @default.
- W4382810367 hasConcept C119857082 @default.
- W4382810367 hasConcept C135763542 @default.
- W4382810367 hasConcept C150194340 @default.
- W4382810367 hasConcept C153209595 @default.
- W4382810367 hasConcept C161584116 @default.
- W4382810367 hasConcept C162317418 @default.
- W4382810367 hasConcept C180754005 @default.
- W4382810367 hasConcept C186413461 @default.
- W4382810367 hasConcept C197754878 @default.
- W4382810367 hasConcept C2908647359 @default.
- W4382810367 hasConcept C35605836 @default.
- W4382810367 hasConcept C41008148 @default.
- W4382810367 hasConcept C54355233 @default.
- W4382810367 hasConcept C58041806 @default.
- W4382810367 hasConcept C71924100 @default.
- W4382810367 hasConcept C86803240 @default.