Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382815511> ?p ?o ?g. }
- W4382815511 endingPage "127" @default.
- W4382815511 startingPage "113" @default.
- W4382815511 abstract "The extracellular matrix (ECM) is best described as a dynamic three-dimensional mesh of various macromolecules. These include proteoglycans (e.g., perlecan andagrin), non-proteoglycan polysaccharides (e.g., hyaluronan), and fibrous proteins (e.g., collagen, elastin, fibronectin, and laminin). ECM proteins are involved in various biological functions and their functionality is largely governed by interaction with other ECM proteins as well as trans-membrane receptors including integrins, proteoglycans such assyndecan, other glycoproteins, and members of the immunoglobulin superfamily. In the present work, a machine learning approach is developed using sequence and evolutionary features for predicting ECM protein-receptor interactions. Two different feature vector representations, namely fusion of feature vectors and average of feature vectors are used within corporation of the best representation employing feature selection. The current results show that the feature vector representation is an important aspect of ECM protein interaction prediction, and that the average of feature vectors performed better than the fusion of feature vectors. The best prediction model with boosted random forest resulted in 72.6 % overall accuracy, 74.4 % sensitivity and 70.7 % specificity with the 200 best features obtained using the ReliefF feature selection algorithm. Further, a comparative analysis was performed for negative sample subset selection using three sampling methods, namely random sampling, k-Means sampling, and Uniform sampling. k-Means based representative sampling resulted in enhanced accuracy (75.5 % accuracy with 80.8 % sensitivity, 68.1 % specificity and 0.801 AUC) for the prediction of ECM protein-receptor interactions in comparison to the other sampling methods. On comparison with other three state of the art protein-protein interaction predictors, it is observed that the latter displayed low sensitivity but higher specificity. The current work presents the first machine learning based prediction model specifically developed for ECM protein-receptor interactions." @default.
- W4382815511 created "2023-07-02" @default.
- W4382815511 creator A5004453727 @default.
- W4382815511 creator A5009896314 @default.
- W4382815511 creator A5033839642 @default.
- W4382815511 date "2023-04-24" @default.
- W4382815511 modified "2023-09-23" @default.
- W4382815511 title "Exploiting ensemble learning and negative sample space for predicting extracellular matrix receptor interactions" @default.
- W4382815511 cites W1544435011 @default.
- W4382815511 cites W1583700199 @default.
- W4382815511 cites W1873256004 @default.
- W4382815511 cites W1952620804 @default.
- W4382815511 cites W1967195968 @default.
- W4382815511 cites W1975869018 @default.
- W4382815511 cites W1984977043 @default.
- W4382815511 cites W1987582651 @default.
- W4382815511 cites W1992419399 @default.
- W4382815511 cites W2036410336 @default.
- W4382815511 cites W2040529285 @default.
- W4382815511 cites W2053497293 @default.
- W4382815511 cites W2055043387 @default.
- W4382815511 cites W2078455360 @default.
- W4382815511 cites W2081746584 @default.
- W4382815511 cites W2088252378 @default.
- W4382815511 cites W2092927559 @default.
- W4382815511 cites W2096451472 @default.
- W4382815511 cites W2102268440 @default.
- W4382815511 cites W2115044953 @default.
- W4382815511 cites W2123742794 @default.
- W4382815511 cites W2133990480 @default.
- W4382815511 cites W2136193943 @default.
- W4382815511 cites W2144142508 @default.
- W4382815511 cites W2147000598 @default.
- W4382815511 cites W2150757437 @default.
- W4382815511 cites W2151040995 @default.
- W4382815511 cites W2151554678 @default.
- W4382815511 cites W2165122639 @default.
- W4382815511 cites W2167917621 @default.
- W4382815511 cites W2168020168 @default.
- W4382815511 cites W2276826966 @default.
- W4382815511 cites W2515920217 @default.
- W4382815511 cites W2612935389 @default.
- W4382815511 cites W2731397609 @default.
- W4382815511 cites W2745294951 @default.
- W4382815511 cites W2765195830 @default.
- W4382815511 cites W2787229156 @default.
- W4382815511 cites W2793168264 @default.
- W4382815511 cites W2802430991 @default.
- W4382815511 cites W2911964244 @default.
- W4382815511 cites W2919212025 @default.
- W4382815511 cites W2938801784 @default.
- W4382815511 cites W2964278775 @default.
- W4382815511 cites W2964697938 @default.
- W4382815511 cites W2993724364 @default.
- W4382815511 cites W3097323088 @default.
- W4382815511 cites W4212883601 @default.
- W4382815511 cites W4239510810 @default.
- W4382815511 cites W4246198815 @default.
- W4382815511 cites W4294216483 @default.
- W4382815511 doi "https://doi.org/10.17537/2023.18.113" @default.
- W4382815511 hasPublicationYear "2023" @default.
- W4382815511 type Work @default.
- W4382815511 citedByCount "0" @default.
- W4382815511 crossrefType "journal-article" @default.
- W4382815511 hasAuthorship W4382815511A5004453727 @default.
- W4382815511 hasAuthorship W4382815511A5009896314 @default.
- W4382815511 hasAuthorship W4382815511A5033839642 @default.
- W4382815511 hasBestOaLocation W43828155111 @default.
- W4382815511 hasConcept C106131492 @default.
- W4382815511 hasConcept C12267149 @default.
- W4382815511 hasConcept C138885662 @default.
- W4382815511 hasConcept C140779682 @default.
- W4382815511 hasConcept C148483581 @default.
- W4382815511 hasConcept C153180895 @default.
- W4382815511 hasConcept C154945302 @default.
- W4382815511 hasConcept C17744445 @default.
- W4382815511 hasConcept C189165786 @default.
- W4382815511 hasConcept C199539241 @default.
- W4382815511 hasConcept C2776359362 @default.
- W4382815511 hasConcept C2776401178 @default.
- W4382815511 hasConcept C2779335624 @default.
- W4382815511 hasConcept C31972630 @default.
- W4382815511 hasConcept C33923547 @default.
- W4382815511 hasConcept C41008148 @default.
- W4382815511 hasConcept C41895202 @default.
- W4382815511 hasConcept C70721500 @default.
- W4382815511 hasConcept C83665646 @default.
- W4382815511 hasConcept C86492073 @default.
- W4382815511 hasConcept C86803240 @default.
- W4382815511 hasConcept C94625758 @default.
- W4382815511 hasConcept C95444343 @default.
- W4382815511 hasConceptScore W4382815511C106131492 @default.
- W4382815511 hasConceptScore W4382815511C12267149 @default.
- W4382815511 hasConceptScore W4382815511C138885662 @default.
- W4382815511 hasConceptScore W4382815511C140779682 @default.
- W4382815511 hasConceptScore W4382815511C148483581 @default.
- W4382815511 hasConceptScore W4382815511C153180895 @default.
- W4382815511 hasConceptScore W4382815511C154945302 @default.