Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382866489> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4382866489 endingPage "7712" @default.
- W4382866489 startingPage "7712" @default.
- W4382866489 abstract "Skin conditions influence people of all ages and genders and impose an enormous strain on worldwide public health. For efficient management and medical treatment, skin disorders must be accurately categorized. However, the conventional method of classifying skin conditions can be arbitrary and time-consuming, delaying diagnosis and treatment. In this research, we examine the application of traditional machine learning models and conventional image characteristics for the classification of skin cancer based on picture features. Specifically, we employ six feature extraction approaches, which we model using six classical classifiers. To evaluate our approach, we address skin cancer detection as both a seven-class problem and a two-class problem comprising 21 permutations of skin cancer instances. Our experimental results demonstrate that Random Forest achieves the highest performance, followed by Support Vector Machines. Additionally, our analysis reveals that the Edge Histogram and Fuzzy Opponent Histogram feature sets perform best in learning the skin cancer model. Our comprehensive evaluation of various models provides practitioners with valuable insights when selecting appropriate models for similar problems. Our findings demonstrate that acceptable detection performance can be achieved even with simple feature extraction and non-deep classifiers. We argue that classical features are not only easier and faster to extract than deep features but can also be combined with classical machine learning models to save time and valuable resources." @default.
- W4382866489 created "2023-07-02" @default.
- W4382866489 creator A5039401755 @default.
- W4382866489 creator A5077510540 @default.
- W4382866489 date "2023-06-29" @default.
- W4382866489 modified "2023-09-30" @default.
- W4382866489 title "Image-Based Classical Features and Machine Learning Analysis of Skin Cancer Instances" @default.
- W4382866489 cites W1827931243 @default.
- W4382866489 cites W1992800049 @default.
- W4382866489 cites W2028220066 @default.
- W4382866489 cites W2040600853 @default.
- W4382866489 cites W2103066172 @default.
- W4382866489 cites W2557738935 @default.
- W4382866489 cites W2564782580 @default.
- W4382866489 cites W2581082771 @default.
- W4382866489 cites W2806853752 @default.
- W4382866489 cites W2809025215 @default.
- W4382866489 cites W2911964244 @default.
- W4382866489 cites W2915692389 @default.
- W4382866489 cites W2934399013 @default.
- W4382866489 cites W2946185430 @default.
- W4382866489 cites W2952971376 @default.
- W4382866489 cites W2963946669 @default.
- W4382866489 cites W4221060026 @default.
- W4382866489 cites W4301599667 @default.
- W4382866489 cites W4301599702 @default.
- W4382866489 doi "https://doi.org/10.3390/app13137712" @default.
- W4382866489 hasPublicationYear "2023" @default.
- W4382866489 type Work @default.
- W4382866489 citedByCount "0" @default.
- W4382866489 crossrefType "journal-article" @default.
- W4382866489 hasAuthorship W4382866489A5039401755 @default.
- W4382866489 hasAuthorship W4382866489A5077510540 @default.
- W4382866489 hasBestOaLocation W43828664891 @default.
- W4382866489 hasConcept C115961682 @default.
- W4382866489 hasConcept C119857082 @default.
- W4382866489 hasConcept C121608353 @default.
- W4382866489 hasConcept C12267149 @default.
- W4382866489 hasConcept C126322002 @default.
- W4382866489 hasConcept C138885662 @default.
- W4382866489 hasConcept C153180895 @default.
- W4382866489 hasConcept C154945302 @default.
- W4382866489 hasConcept C169258074 @default.
- W4382866489 hasConcept C17426736 @default.
- W4382866489 hasConcept C2776401178 @default.
- W4382866489 hasConcept C2777212361 @default.
- W4382866489 hasConcept C2777789703 @default.
- W4382866489 hasConcept C41008148 @default.
- W4382866489 hasConcept C41895202 @default.
- W4382866489 hasConcept C52622490 @default.
- W4382866489 hasConcept C53533937 @default.
- W4382866489 hasConcept C71924100 @default.
- W4382866489 hasConceptScore W4382866489C115961682 @default.
- W4382866489 hasConceptScore W4382866489C119857082 @default.
- W4382866489 hasConceptScore W4382866489C121608353 @default.
- W4382866489 hasConceptScore W4382866489C12267149 @default.
- W4382866489 hasConceptScore W4382866489C126322002 @default.
- W4382866489 hasConceptScore W4382866489C138885662 @default.
- W4382866489 hasConceptScore W4382866489C153180895 @default.
- W4382866489 hasConceptScore W4382866489C154945302 @default.
- W4382866489 hasConceptScore W4382866489C169258074 @default.
- W4382866489 hasConceptScore W4382866489C17426736 @default.
- W4382866489 hasConceptScore W4382866489C2776401178 @default.
- W4382866489 hasConceptScore W4382866489C2777212361 @default.
- W4382866489 hasConceptScore W4382866489C2777789703 @default.
- W4382866489 hasConceptScore W4382866489C41008148 @default.
- W4382866489 hasConceptScore W4382866489C41895202 @default.
- W4382866489 hasConceptScore W4382866489C52622490 @default.
- W4382866489 hasConceptScore W4382866489C53533937 @default.
- W4382866489 hasConceptScore W4382866489C71924100 @default.
- W4382866489 hasIssue "13" @default.
- W4382866489 hasLocation W43828664891 @default.
- W4382866489 hasOpenAccess W4382866489 @default.
- W4382866489 hasPrimaryLocation W43828664891 @default.
- W4382866489 hasRelatedWork W2087874231 @default.
- W4382866489 hasRelatedWork W2188464267 @default.
- W4382866489 hasRelatedWork W2363530787 @default.
- W4382866489 hasRelatedWork W2550539038 @default.
- W4382866489 hasRelatedWork W2893441059 @default.
- W4382866489 hasRelatedWork W2951312798 @default.
- W4382866489 hasRelatedWork W2999548501 @default.
- W4382866489 hasRelatedWork W3004377704 @default.
- W4382866489 hasRelatedWork W3096162641 @default.
- W4382866489 hasRelatedWork W3127217315 @default.
- W4382866489 hasVolume "13" @default.
- W4382866489 isParatext "false" @default.
- W4382866489 isRetracted "false" @default.
- W4382866489 workType "article" @default.