Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382873862> ?p ?o ?g. }
- W4382873862 endingPage "2515" @default.
- W4382873862 startingPage "2515" @default.
- W4382873862 abstract "Soil moisture is a crucial factor in the field of meteorology, hydrology, and agricultural sciences. In agricultural production, surface soil moisture (SSM) is crucial for crop yield estimation and drought monitoring. For SSM inversion, a synthetic aperture radar (SAR) offers a trustworthy data source. However, for agricultural fields, the use of SAR data alone to invert SSM is susceptible to the influence of vegetation cover. In this paper, based on Sentinel-1 microwave remote sensing data and Sentinel-2 optical remote sensing data, a convolution neural network optimized by sparrow search algorithm (SSA-CNN) was suggested to invert farmland SSM. The feature parameters were first extracted from pre-processed remote sensing data. Then, the correlation analysis between the extracted feature parameters and field measured SSM data was carried out, and the optimal combination of feature parameters for SSM inversion was selected as the input data of the subsequent models. To enhance the performance of the CNN, the hyper-parameters of CNN were optimized using SSA, and the SSA-CNN model was built for SSM inversion based on the obtained optimal hyper-parameter combination. Three typical machine learning approaches, including generalized regression neural network, random forest, and CNN, were used for comparison to show the efficacy of the suggested method. With an average coefficient of determination of 0.80, an average root mean square error of 2.17 vol.%, and an average mean absolute error of 1.68 vol.%, the findings demonstrated that the SSA-CNN model with the optimal feature combination had a better accuracy among the 4 models. In the end, the SSM of the study region was inverted throughout four phenological periods using the SSA-CNN model. The inversion results indicated that the suggested method performed well in local situations." @default.
- W4382873862 created "2023-07-02" @default.
- W4382873862 creator A5037730662 @default.
- W4382873862 creator A5085238011 @default.
- W4382873862 creator A5087761984 @default.
- W4382873862 creator A5092379450 @default.
- W4382873862 date "2023-05-10" @default.
- W4382873862 modified "2023-09-26" @default.
- W4382873862 title "Inversion of Soil Moisture on Farmland Areas Based on SSA-CNN Using Multi-Source Remote Sensing Data" @default.
- W4382873862 cites W1973719386 @default.
- W4382873862 cites W1981146655 @default.
- W4382873862 cites W1991367406 @default.
- W4382873862 cites W2000102737 @default.
- W4382873862 cites W2030397499 @default.
- W4382873862 cites W2032639587 @default.
- W4382873862 cites W2068371905 @default.
- W4382873862 cites W2072955302 @default.
- W4382873862 cites W2077509829 @default.
- W4382873862 cites W2084952127 @default.
- W4382873862 cites W2090664287 @default.
- W4382873862 cites W2097790164 @default.
- W4382873862 cites W2112796928 @default.
- W4382873862 cites W2114711020 @default.
- W4382873862 cites W2133013453 @default.
- W4382873862 cites W2133989913 @default.
- W4382873862 cites W2138149909 @default.
- W4382873862 cites W2141348340 @default.
- W4382873862 cites W2146377317 @default.
- W4382873862 cites W2149723649 @default.
- W4382873862 cites W2150956979 @default.
- W4382873862 cites W2163283072 @default.
- W4382873862 cites W2168219817 @default.
- W4382873862 cites W2169517707 @default.
- W4382873862 cites W2188767531 @default.
- W4382873862 cites W2314721898 @default.
- W4382873862 cites W2327388661 @default.
- W4382873862 cites W2334333074 @default.
- W4382873862 cites W2543580944 @default.
- W4382873862 cites W2752871607 @default.
- W4382873862 cites W2773793494 @default.
- W4382873862 cites W2804614303 @default.
- W4382873862 cites W2903282641 @default.
- W4382873862 cites W2911964244 @default.
- W4382873862 cites W2998553334 @default.
- W4382873862 cites W3031909544 @default.
- W4382873862 cites W3090526350 @default.
- W4382873862 cites W3120900963 @default.
- W4382873862 cites W3122638356 @default.
- W4382873862 cites W3136885625 @default.
- W4382873862 cites W3156532969 @default.
- W4382873862 cites W3205936232 @default.
- W4382873862 cites W4206617120 @default.
- W4382873862 doi "https://doi.org/10.3390/rs15102515" @default.
- W4382873862 hasPublicationYear "2023" @default.
- W4382873862 type Work @default.
- W4382873862 citedByCount "0" @default.
- W4382873862 crossrefType "journal-article" @default.
- W4382873862 hasAuthorship W4382873862A5037730662 @default.
- W4382873862 hasAuthorship W4382873862A5085238011 @default.
- W4382873862 hasAuthorship W4382873862A5087761984 @default.
- W4382873862 hasAuthorship W4382873862A5092379450 @default.
- W4382873862 hasBestOaLocation W43828738621 @default.
- W4382873862 hasConcept C105795698 @default.
- W4382873862 hasConcept C109007969 @default.
- W4382873862 hasConcept C127313418 @default.
- W4382873862 hasConcept C139945424 @default.
- W4382873862 hasConcept C151730666 @default.
- W4382873862 hasConcept C154945302 @default.
- W4382873862 hasConcept C169258074 @default.
- W4382873862 hasConcept C1893757 @default.
- W4382873862 hasConcept C33923547 @default.
- W4382873862 hasConcept C39432304 @default.
- W4382873862 hasConcept C41008148 @default.
- W4382873862 hasConcept C62649853 @default.
- W4382873862 hasConcept C81363708 @default.
- W4382873862 hasConceptScore W4382873862C105795698 @default.
- W4382873862 hasConceptScore W4382873862C109007969 @default.
- W4382873862 hasConceptScore W4382873862C127313418 @default.
- W4382873862 hasConceptScore W4382873862C139945424 @default.
- W4382873862 hasConceptScore W4382873862C151730666 @default.
- W4382873862 hasConceptScore W4382873862C154945302 @default.
- W4382873862 hasConceptScore W4382873862C169258074 @default.
- W4382873862 hasConceptScore W4382873862C1893757 @default.
- W4382873862 hasConceptScore W4382873862C33923547 @default.
- W4382873862 hasConceptScore W4382873862C39432304 @default.
- W4382873862 hasConceptScore W4382873862C41008148 @default.
- W4382873862 hasConceptScore W4382873862C62649853 @default.
- W4382873862 hasConceptScore W4382873862C81363708 @default.
- W4382873862 hasFunder F4320321001 @default.
- W4382873862 hasIssue "10" @default.
- W4382873862 hasLocation W43828738621 @default.
- W4382873862 hasOpenAccess W4382873862 @default.
- W4382873862 hasPrimaryLocation W43828738621 @default.
- W4382873862 hasRelatedWork W2521062615 @default.
- W4382873862 hasRelatedWork W2735477435 @default.
- W4382873862 hasRelatedWork W2899084033 @default.
- W4382873862 hasRelatedWork W3016958897 @default.
- W4382873862 hasRelatedWork W3045739591 @default.