Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382883063> ?p ?o ?g. }
- W4382883063 endingPage "171224" @default.
- W4382883063 startingPage "171224" @default.
- W4382883063 abstract "This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%." @default.
- W4382883063 created "2023-07-02" @default.
- W4382883063 creator A5024966126 @default.
- W4382883063 creator A5052131065 @default.
- W4382883063 creator A5052435473 @default.
- W4382883063 creator A5061292397 @default.
- W4382883063 creator A5073742629 @default.
- W4382883063 creator A5077443722 @default.
- W4382883063 creator A5079079489 @default.
- W4382883063 creator A5092380155 @default.
- W4382883063 date "2023-11-01" @default.
- W4382883063 modified "2023-10-01" @default.
- W4382883063 title "Supervised Machine Learning-based Multi-Class Phase Prediction in High-Entropy Alloys using Robust Databases" @default.
- W4382883063 cites W1970065157 @default.
- W4382883063 cites W2020151722 @default.
- W4382883063 cites W2065796870 @default.
- W4382883063 cites W2201563651 @default.
- W4382883063 cites W2506786328 @default.
- W4382883063 cites W2586548042 @default.
- W4382883063 cites W2802652936 @default.
- W4382883063 cites W2807029607 @default.
- W4382883063 cites W2883372618 @default.
- W4382883063 cites W2904540990 @default.
- W4382883063 cites W2914874661 @default.
- W4382883063 cites W2922127369 @default.
- W4382883063 cites W2992115806 @default.
- W4382883063 cites W2992394995 @default.
- W4382883063 cites W3008647172 @default.
- W4382883063 cites W3023402054 @default.
- W4382883063 cites W3037854403 @default.
- W4382883063 cites W3047911553 @default.
- W4382883063 cites W3111500033 @default.
- W4382883063 cites W3117040612 @default.
- W4382883063 cites W3120273039 @default.
- W4382883063 cites W3126714751 @default.
- W4382883063 cites W3134320006 @default.
- W4382883063 cites W3144904155 @default.
- W4382883063 cites W3160210079 @default.
- W4382883063 cites W3199020573 @default.
- W4382883063 cites W3201004060 @default.
- W4382883063 cites W4206767897 @default.
- W4382883063 cites W4229564806 @default.
- W4382883063 cites W4281635779 @default.
- W4382883063 cites W4281833511 @default.
- W4382883063 cites W4288459223 @default.
- W4382883063 cites W4290997390 @default.
- W4382883063 cites W4297829634 @default.
- W4382883063 cites W4307931170 @default.
- W4382883063 cites W4313219807 @default.
- W4382883063 cites W4318815858 @default.
- W4382883063 cites W4327732570 @default.
- W4382883063 cites W4360798331 @default.
- W4382883063 cites W4366245624 @default.
- W4382883063 doi "https://doi.org/10.1016/j.jallcom.2023.171224" @default.
- W4382883063 hasPublicationYear "2023" @default.
- W4382883063 type Work @default.
- W4382883063 citedByCount "2" @default.
- W4382883063 countsByYear W43828830632023 @default.
- W4382883063 crossrefType "journal-article" @default.
- W4382883063 hasAuthorship W4382883063A5024966126 @default.
- W4382883063 hasAuthorship W4382883063A5052131065 @default.
- W4382883063 hasAuthorship W4382883063A5052435473 @default.
- W4382883063 hasAuthorship W4382883063A5061292397 @default.
- W4382883063 hasAuthorship W4382883063A5073742629 @default.
- W4382883063 hasAuthorship W4382883063A5077443722 @default.
- W4382883063 hasAuthorship W4382883063A5079079489 @default.
- W4382883063 hasAuthorship W4382883063A5092380155 @default.
- W4382883063 hasConcept C119857082 @default.
- W4382883063 hasConcept C12267149 @default.
- W4382883063 hasConcept C154945302 @default.
- W4382883063 hasConcept C169258074 @default.
- W4382883063 hasConcept C191897082 @default.
- W4382883063 hasConcept C192562407 @default.
- W4382883063 hasConcept C27501479 @default.
- W4382883063 hasConcept C2780026712 @default.
- W4382883063 hasConcept C41008148 @default.
- W4382883063 hasConcept C46686674 @default.
- W4382883063 hasConcept C70153297 @default.
- W4382883063 hasConceptScore W4382883063C119857082 @default.
- W4382883063 hasConceptScore W4382883063C12267149 @default.
- W4382883063 hasConceptScore W4382883063C154945302 @default.
- W4382883063 hasConceptScore W4382883063C169258074 @default.
- W4382883063 hasConceptScore W4382883063C191897082 @default.
- W4382883063 hasConceptScore W4382883063C192562407 @default.
- W4382883063 hasConceptScore W4382883063C27501479 @default.
- W4382883063 hasConceptScore W4382883063C2780026712 @default.
- W4382883063 hasConceptScore W4382883063C41008148 @default.
- W4382883063 hasConceptScore W4382883063C46686674 @default.
- W4382883063 hasConceptScore W4382883063C70153297 @default.
- W4382883063 hasLocation W43828830631 @default.
- W4382883063 hasOpenAccess W4382883063 @default.
- W4382883063 hasPrimaryLocation W43828830631 @default.
- W4382883063 hasRelatedWork W2767034401 @default.
- W4382883063 hasRelatedWork W3081330590 @default.
- W4382883063 hasRelatedWork W3195168932 @default.
- W4382883063 hasRelatedWork W3204641204 @default.
- W4382883063 hasRelatedWork W4288057626 @default.
- W4382883063 hasRelatedWork W4293069612 @default.