Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382893306> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4382893306 endingPage "1084" @default.
- W4382893306 startingPage "1069" @default.
- W4382893306 abstract "Abstract We consider solving the forward and inverse partial differential equations (PDEs) which have sharp solutions with physics-informed neural networks (PINNs) in this work. In particular, to better capture the sharpness of the solution, we propose the adaptive sampling methods (ASMs) based on the residual and the gradient of the solution. We first present a residual only-based ASM denoted by ASM I. In this approach, we first train the neural network using a small number of residual points and divide the computational domain into a certain number of sub-domains, then we add new residual points in the sub-domain which has the largest mean absolute value of the residual, and those points which have the largest absolute values of the residual in this sub-domain as new residual points. We further develop a second type of ASM (denoted by ASM II) based on both the residual and the gradient of the solution due to the fact that only the residual may not be able to efficiently capture the sharpness of the solution. The procedure of ASM II is almost the same as that of ASM I, and we add new residual points which have not only large residuals but also large gradients. To demonstrate the effectiveness of the present methods, we use both ASM I and ASM II to solve a number of PDEs, including the Burger equation, the compressible Euler equation, the Poisson equation over an L-shape domain as well as the high-dimensional Poisson equation. It has been shown from the numerical results that the sharp solutions can be well approximated by using either ASM I or ASM II, and both methods deliver much more accurate solutions than the original PINNs with the same number of residual points. Moreover, the ASM II algorithm has better performance in terms of accuracy, efficiency, and stability compared with the ASM I algorithm. This means that the gradient of the solution improves the stability and efficiency of the adaptive sampling procedure as well as the accuracy of the solution. Furthermore, we also employ the similar adaptive sampling technique for the data points of boundary conditions (BCs) if the sharpness of the solution is near the boundary. The result of the L-shape Poisson problem indicates that the present method can significantly improve the efficiency, stability, and accuracy." @default.
- W4382893306 created "2023-07-03" @default.
- W4382893306 creator A5008752991 @default.
- W4382893306 creator A5025814758 @default.
- W4382893306 date "2023-07-01" @default.
- W4382893306 modified "2023-10-18" @default.
- W4382893306 title "Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions" @default.
- W4382893306 cites W1965154800 @default.
- W4382893306 cites W1975059575 @default.
- W4382893306 cites W1985629301 @default.
- W4382893306 cites W2077047259 @default.
- W4382893306 cites W2112739286 @default.
- W4382893306 cites W2148628123 @default.
- W4382893306 cites W2160815625 @default.
- W4382893306 cites W2618530766 @default.
- W4382893306 cites W2749028154 @default.
- W4382893306 cites W2760972773 @default.
- W4382893306 cites W2803629276 @default.
- W4382893306 cites W2890968382 @default.
- W4382893306 cites W2899283552 @default.
- W4382893306 cites W2903660960 @default.
- W4382893306 cites W2919115771 @default.
- W4382893306 cites W2919958648 @default.
- W4382893306 cites W2969381807 @default.
- W4382893306 cites W2998366519 @default.
- W4382893306 cites W3014009018 @default.
- W4382893306 cites W3105648287 @default.
- W4382893306 cites W3209909540 @default.
- W4382893306 cites W4220717841 @default.
- W4382893306 cites W4283321413 @default.
- W4382893306 cites W4289699964 @default.
- W4382893306 cites W4295680049 @default.
- W4382893306 cites W4302010620 @default.
- W4382893306 cites W4307154444 @default.
- W4382893306 cites W4307315442 @default.
- W4382893306 cites W4382891143 @default.
- W4382893306 doi "https://doi.org/10.1007/s10483-023-2994-7" @default.
- W4382893306 hasPublicationYear "2023" @default.
- W4382893306 type Work @default.
- W4382893306 citedByCount "1" @default.
- W4382893306 countsByYear W43828933062023 @default.
- W4382893306 crossrefType "journal-article" @default.
- W4382893306 hasAuthorship W4382893306A5008752991 @default.
- W4382893306 hasAuthorship W4382893306A5025814758 @default.
- W4382893306 hasBestOaLocation W43828933061 @default.
- W4382893306 hasConcept C106131492 @default.
- W4382893306 hasConcept C11413529 @default.
- W4382893306 hasConcept C134306372 @default.
- W4382893306 hasConcept C140779682 @default.
- W4382893306 hasConcept C154945302 @default.
- W4382893306 hasConcept C155512373 @default.
- W4382893306 hasConcept C28826006 @default.
- W4382893306 hasConcept C31972630 @default.
- W4382893306 hasConcept C33923547 @default.
- W4382893306 hasConcept C36503486 @default.
- W4382893306 hasConcept C41008148 @default.
- W4382893306 hasConcept C50644808 @default.
- W4382893306 hasConcept C62884695 @default.
- W4382893306 hasConcept C93779851 @default.
- W4382893306 hasConceptScore W4382893306C106131492 @default.
- W4382893306 hasConceptScore W4382893306C11413529 @default.
- W4382893306 hasConceptScore W4382893306C134306372 @default.
- W4382893306 hasConceptScore W4382893306C140779682 @default.
- W4382893306 hasConceptScore W4382893306C154945302 @default.
- W4382893306 hasConceptScore W4382893306C155512373 @default.
- W4382893306 hasConceptScore W4382893306C28826006 @default.
- W4382893306 hasConceptScore W4382893306C31972630 @default.
- W4382893306 hasConceptScore W4382893306C33923547 @default.
- W4382893306 hasConceptScore W4382893306C36503486 @default.
- W4382893306 hasConceptScore W4382893306C41008148 @default.
- W4382893306 hasConceptScore W4382893306C50644808 @default.
- W4382893306 hasConceptScore W4382893306C62884695 @default.
- W4382893306 hasConceptScore W4382893306C93779851 @default.
- W4382893306 hasIssue "7" @default.
- W4382893306 hasLocation W43828933061 @default.
- W4382893306 hasOpenAccess W4382893306 @default.
- W4382893306 hasPrimaryLocation W43828933061 @default.
- W4382893306 hasRelatedWork W1989186365 @default.
- W4382893306 hasRelatedWork W2070933671 @default.
- W4382893306 hasRelatedWork W2079547538 @default.
- W4382893306 hasRelatedWork W2170072451 @default.
- W4382893306 hasRelatedWork W2951280217 @default.
- W4382893306 hasRelatedWork W3033623076 @default.
- W4382893306 hasRelatedWork W3118927209 @default.
- W4382893306 hasRelatedWork W4253630528 @default.
- W4382893306 hasRelatedWork W4294414639 @default.
- W4382893306 hasRelatedWork W4313199240 @default.
- W4382893306 hasVolume "44" @default.
- W4382893306 isParatext "false" @default.
- W4382893306 isRetracted "false" @default.
- W4382893306 workType "article" @default.