Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382929363> ?p ?o ?g. }
- W4382929363 abstract "Yam (Dioscorea alata L.) is the staple food of many populations in the intertropical zone, where it is grown. The lack of phenotyping methods for tuber quality has hindered the adoption of new genotypes from breeding programs. Recently, near-infrared spectroscopy (NIRS) has been used as a reliable tool to characterize the chemical composition of the yam tuber. However, it failed to predict the amylose content, although this trait is strongly involved in the quality of the product.This study used NIRS to predict the amylose content from 186 yam flour samples. Two calibration methods were developed and validated on an independent dataset: partial least squares (PLS) and convolutional neural networks (CNN). To evaluate final model performances, the coefficient of determination (R2 ), the root mean square error (RMSE), and the ratio of performance to deviation (RPD) were calculated using predictions on an independent validation dataset. The tested models showed contrasting performances (i.e., R2 of 0.72 and 0.89, RMSE of 1.33 and 0.81, RPD of 2.13 and 3.49 respectively, for the PLS and the CNN model).According to the quality standard for NIRS model prediction used in food science, the PLS method proved unsuccessful (RPD < 3 and R2 < 0.8) for predicting amylose content from yam flour but the CNN model proved to be reliable and efficient method. With the application of deep learning methods, this study established the proof of concept that amylose content, a key driver of yam textural quality and acceptance, can be predicted accurately using NIRS as a high throughput phenotyping method. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry." @default.
- W4382929363 created "2023-07-04" @default.
- W4382929363 creator A5002939310 @default.
- W4382929363 creator A5012175316 @default.
- W4382929363 creator A5030500225 @default.
- W4382929363 creator A5040716907 @default.
- W4382929363 creator A5052578020 @default.
- W4382929363 creator A5057672955 @default.
- W4382929363 creator A5061390921 @default.
- W4382929363 creator A5062304039 @default.
- W4382929363 creator A5063138324 @default.
- W4382929363 creator A5072936485 @default.
- W4382929363 creator A5083614320 @default.
- W4382929363 creator A5088432321 @default.
- W4382929363 creator A5092383465 @default.
- W4382929363 date "2023-07-31" @default.
- W4382929363 modified "2023-10-03" @default.
- W4382929363 title "Convolutional neural network allows amylose content prediction in yam (<i>Dioscorea alata</i> L.) flour using near infrared spectroscopy" @default.
- W4382929363 cites W1981207809 @default.
- W4382929363 cites W1983010340 @default.
- W4382929363 cites W1986453686 @default.
- W4382929363 cites W2014621510 @default.
- W4382929363 cites W2034121858 @default.
- W4382929363 cites W2036887256 @default.
- W4382929363 cites W2039747248 @default.
- W4382929363 cites W2048765414 @default.
- W4382929363 cites W2065616117 @default.
- W4382929363 cites W2066560839 @default.
- W4382929363 cites W2071890008 @default.
- W4382929363 cites W2078737956 @default.
- W4382929363 cites W2081043485 @default.
- W4382929363 cites W2090970850 @default.
- W4382929363 cites W2096615175 @default.
- W4382929363 cites W2113653874 @default.
- W4382929363 cites W2116132422 @default.
- W4382929363 cites W2117434789 @default.
- W4382929363 cites W2139666924 @default.
- W4382929363 cites W2314719520 @default.
- W4382929363 cites W2619230229 @default.
- W4382929363 cites W2789876780 @default.
- W4382929363 cites W2883273084 @default.
- W4382929363 cites W2910254416 @default.
- W4382929363 cites W2981922730 @default.
- W4382929363 cites W3038422029 @default.
- W4382929363 cites W3038957263 @default.
- W4382929363 cites W3048038488 @default.
- W4382929363 cites W3048436429 @default.
- W4382929363 cites W3093925642 @default.
- W4382929363 cites W3155211666 @default.
- W4382929363 cites W4221031187 @default.
- W4382929363 cites W4280512262 @default.
- W4382929363 doi "https://doi.org/10.1002/jsfa.12825" @default.
- W4382929363 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37400424" @default.
- W4382929363 hasPublicationYear "2023" @default.
- W4382929363 type Work @default.
- W4382929363 citedByCount "0" @default.
- W4382929363 crossrefType "journal-article" @default.
- W4382929363 hasAuthorship W4382929363A5002939310 @default.
- W4382929363 hasAuthorship W4382929363A5012175316 @default.
- W4382929363 hasAuthorship W4382929363A5030500225 @default.
- W4382929363 hasAuthorship W4382929363A5040716907 @default.
- W4382929363 hasAuthorship W4382929363A5052578020 @default.
- W4382929363 hasAuthorship W4382929363A5057672955 @default.
- W4382929363 hasAuthorship W4382929363A5061390921 @default.
- W4382929363 hasAuthorship W4382929363A5062304039 @default.
- W4382929363 hasAuthorship W4382929363A5063138324 @default.
- W4382929363 hasAuthorship W4382929363A5072936485 @default.
- W4382929363 hasAuthorship W4382929363A5083614320 @default.
- W4382929363 hasAuthorship W4382929363A5088432321 @default.
- W4382929363 hasAuthorship W4382929363A5092383465 @default.
- W4382929363 hasBestOaLocation W43829293631 @default.
- W4382929363 hasConcept C105795698 @default.
- W4382929363 hasConcept C128990827 @default.
- W4382929363 hasConcept C139945424 @default.
- W4382929363 hasConcept C142724271 @default.
- W4382929363 hasConcept C153180895 @default.
- W4382929363 hasConcept C154945302 @default.
- W4382929363 hasConcept C185592680 @default.
- W4382929363 hasConcept C204787440 @default.
- W4382929363 hasConcept C22354355 @default.
- W4382929363 hasConcept C27438332 @default.
- W4382929363 hasConcept C2776804113 @default.
- W4382929363 hasConcept C2778944361 @default.
- W4382929363 hasConcept C31903555 @default.
- W4382929363 hasConcept C33923547 @default.
- W4382929363 hasConcept C41008148 @default.
- W4382929363 hasConcept C529335014 @default.
- W4382929363 hasConcept C71924100 @default.
- W4382929363 hasConceptScore W4382929363C105795698 @default.
- W4382929363 hasConceptScore W4382929363C128990827 @default.
- W4382929363 hasConceptScore W4382929363C139945424 @default.
- W4382929363 hasConceptScore W4382929363C142724271 @default.
- W4382929363 hasConceptScore W4382929363C153180895 @default.
- W4382929363 hasConceptScore W4382929363C154945302 @default.
- W4382929363 hasConceptScore W4382929363C185592680 @default.
- W4382929363 hasConceptScore W4382929363C204787440 @default.
- W4382929363 hasConceptScore W4382929363C22354355 @default.
- W4382929363 hasConceptScore W4382929363C27438332 @default.
- W4382929363 hasConceptScore W4382929363C2776804113 @default.
- W4382929363 hasConceptScore W4382929363C2778944361 @default.