Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382930229> ?p ?o ?g. }
- W4382930229 abstract "Abstract Atypical femur fractures (AFF) represent a very rare type of fracture that can be difficult to discriminate radiologically from normal femur fractures (NFF). AFFs are associated with drugs that are administered to prevent osteoporosis-related fragility fractures, which are highly prevalent in the elderly population. Given that these fractures are rare and the radiologic changes are subtle currently only 7% of AFFs are correctly identified, which hinders adequate treatment for most patients with AFF. Deep learning models could be trained to classify automatically a fracture as AFF or NFF, thereby assisting radiologists in detecting these rare fractures. Historically, for this classification task, only imaging data have been used, using convolutional neural networks (CNN) or vision transformers applied to radiographs. However, to mimic situations in which all available data are used to arrive at a diagnosis, we adopted an approach of deep learning that is based on the integration of image data and tabular data (from electronic health records) for 159 patients with AFF and 914 patients with NFF. We hypothesized that the combinatorial data, compiled from all the radiology departments of 72 hospitals in Sweden and the Swedish National Patient Register, would improve classification accuracy, as compared to using only one modality. At the patient level, the area under the ROC curve (AUC) increased from 0.966 to 0.987 when using the integrated set of imaging data and seven pre-selected variables, as compared to only using imaging data. More importantly, the sensitivity increased from 0.796 to 0.903. We found a greater impact of data fusion when only a randomly selected subset of available images was used to make the image and tabular data more balanced for each patient. The AUC then increased from 0.949 to 0.984, and the sensitivity increased from 0.727 to 0.849. These AUC improvements are not large, mainly because of the already excellent performance of the CNN (AUC of 0.966) when only images are used. However, the improvement is clinically highly relevant considering the importance of accuracy in medical diagnostics. We expect an even greater effect when imaging data from a clinical workflow, comprising a more diverse set of diagnostic images, are used." @default.
- W4382930229 created "2023-07-04" @default.
- W4382930229 creator A5047834365 @default.
- W4382930229 creator A5053594247 @default.
- W4382930229 creator A5078221274 @default.
- W4382930229 creator A5092383800 @default.
- W4382930229 date "2023-07-03" @default.
- W4382930229 modified "2023-09-25" @default.
- W4382930229 title "Fusion of Electronic Health Records and Radiographic Images for a Multimodal Deep Learning Prediction Model of Atypical Femur Fractures" @default.
- W4382930229 cites W1889506364 @default.
- W4382930229 cites W1968426398 @default.
- W4382930229 cites W2000445173 @default.
- W4382930229 cites W2019292020 @default.
- W4382930229 cites W2021560851 @default.
- W4382930229 cites W2025725214 @default.
- W4382930229 cites W2031944222 @default.
- W4382930229 cites W2043539287 @default.
- W4382930229 cites W2058954178 @default.
- W4382930229 cites W2069854575 @default.
- W4382930229 cites W2098543955 @default.
- W4382930229 cites W2102385904 @default.
- W4382930229 cites W2109553965 @default.
- W4382930229 cites W2135327653 @default.
- W4382930229 cites W2166018731 @default.
- W4382930229 cites W2168199261 @default.
- W4382930229 cites W2169251377 @default.
- W4382930229 cites W2170786892 @default.
- W4382930229 cites W2192631484 @default.
- W4382930229 cites W2194775991 @default.
- W4382930229 cites W2272630658 @default.
- W4382930229 cites W2476004024 @default.
- W4382930229 cites W2624963411 @default.
- W4382930229 cites W2793251588 @default.
- W4382930229 cites W2811117337 @default.
- W4382930229 cites W2998512002 @default.
- W4382930229 cites W2999309192 @default.
- W4382930229 cites W3028962416 @default.
- W4382930229 cites W3045702459 @default.
- W4382930229 cites W3075871984 @default.
- W4382930229 cites W3092145260 @default.
- W4382930229 cites W3094595351 @default.
- W4382930229 cites W3111996834 @default.
- W4382930229 cites W3132541064 @default.
- W4382930229 cites W3195195170 @default.
- W4382930229 cites W3210070020 @default.
- W4382930229 cites W4206552162 @default.
- W4382930229 cites W4206677903 @default.
- W4382930229 cites W4213430005 @default.
- W4382930229 cites W4282042420 @default.
- W4382930229 cites W4295951577 @default.
- W4382930229 cites W4296776307 @default.
- W4382930229 cites W4296794216 @default.
- W4382930229 cites W4308885870 @default.
- W4382930229 cites W4311133813 @default.
- W4382930229 doi "https://doi.org/10.1101/2023.07.02.23292125" @default.
- W4382930229 hasPublicationYear "2023" @default.
- W4382930229 type Work @default.
- W4382930229 citedByCount "0" @default.
- W4382930229 crossrefType "posted-content" @default.
- W4382930229 hasAuthorship W4382930229A5047834365 @default.
- W4382930229 hasAuthorship W4382930229A5053594247 @default.
- W4382930229 hasAuthorship W4382930229A5078221274 @default.
- W4382930229 hasAuthorship W4382930229A5092383800 @default.
- W4382930229 hasBestOaLocation W43829302291 @default.
- W4382930229 hasConcept C108583219 @default.
- W4382930229 hasConcept C119857082 @default.
- W4382930229 hasConcept C126322002 @default.
- W4382930229 hasConcept C126838900 @default.
- W4382930229 hasConcept C141071460 @default.
- W4382930229 hasConcept C154945302 @default.
- W4382930229 hasConcept C160735492 @default.
- W4382930229 hasConcept C162324750 @default.
- W4382930229 hasConcept C19527891 @default.
- W4382930229 hasConcept C2776541429 @default.
- W4382930229 hasConcept C2780554211 @default.
- W4382930229 hasConcept C2992660301 @default.
- W4382930229 hasConcept C3020144179 @default.
- W4382930229 hasConcept C36454342 @default.
- W4382930229 hasConcept C41008148 @default.
- W4382930229 hasConcept C50522688 @default.
- W4382930229 hasConcept C71924100 @default.
- W4382930229 hasConcept C81363708 @default.
- W4382930229 hasConceptScore W4382930229C108583219 @default.
- W4382930229 hasConceptScore W4382930229C119857082 @default.
- W4382930229 hasConceptScore W4382930229C126322002 @default.
- W4382930229 hasConceptScore W4382930229C126838900 @default.
- W4382930229 hasConceptScore W4382930229C141071460 @default.
- W4382930229 hasConceptScore W4382930229C154945302 @default.
- W4382930229 hasConceptScore W4382930229C160735492 @default.
- W4382930229 hasConceptScore W4382930229C162324750 @default.
- W4382930229 hasConceptScore W4382930229C19527891 @default.
- W4382930229 hasConceptScore W4382930229C2776541429 @default.
- W4382930229 hasConceptScore W4382930229C2780554211 @default.
- W4382930229 hasConceptScore W4382930229C2992660301 @default.
- W4382930229 hasConceptScore W4382930229C3020144179 @default.
- W4382930229 hasConceptScore W4382930229C36454342 @default.
- W4382930229 hasConceptScore W4382930229C41008148 @default.
- W4382930229 hasConceptScore W4382930229C50522688 @default.
- W4382930229 hasConceptScore W4382930229C71924100 @default.
- W4382930229 hasConceptScore W4382930229C81363708 @default.