Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382938162> ?p ?o ?g. }
- W4382938162 abstract "Abstract Numerous efforts in the additive manufacturing literature have been made toward in-situ defect prediction for process control and optimization. However, the current work in the literature is limited by the need for multi-sensory data in appropriate resolution and scale to capture defects reliably and the need for systematic experimental and data-driven modeling validation to prove utility. For the first time in literature, we propose a data-driven neural network framework capable of in-situ micro-porosity localization for laser powder bed fusion via exclusively within hatch strip of sensory data, as opposed to a three-dimensional neighborhood of sensory data. We further propose using prior-guided neural networks to utilize the often-abundant nominal data in the form of a prior loss, enabling the machine learning structure to comply more with process physics. The proposed methods are validated via rigorous experimental data sets of high-strength aluminum A205 parts, repeated k-fold cross-validation, and prior-guided validation. Using exclusively within hatch stripe data, we detect and localize porosity with a spherical equivalent diameter (SED) smaller than $$50.00,upmu $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>50.00</mml:mn> <mml:mspace /> <mml:mi>μ</mml:mi> </mml:mrow> </mml:math> m with a classification accuracy of $$73.13pm 1.57%$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>73.13</mml:mn> <mml:mo>±</mml:mo> <mml:mn>1.57</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math> This is the first work in the literature demonstrating in-situ localization of porosities as small as $$38.12,upmu m$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>38.12</mml:mn> <mml:mspace /> <mml:mi>μ</mml:mi> <mml:mi>m</mml:mi> </mml:mrow> </mml:math> SED and is more than a five-fold improvement on the smallest SED porosity localization via spectral emissions sensory data in the literature. In-situ localizing micro-porosity using exclusively within hatch-stripe data is a significant step towards within-layer defect mitigation, advanced process feedback control, and compliance with the reliability certification requirements of industries such as the aerospace industry." @default.
- W4382938162 created "2023-07-04" @default.
- W4382938162 creator A5024123148 @default.
- W4382938162 creator A5081468727 @default.
- W4382938162 date "2023-07-03" @default.
- W4382938162 modified "2023-09-25" @default.
- W4382938162 title "In-situ porosity prediction in metal powder bed fusion additive manufacturing using spectral emissions: a prior-guided machine learning approach" @default.
- W4382938162 cites W1600545872 @default.
- W4382938162 cites W1677182931 @default.
- W4382938162 cites W1973785225 @default.
- W4382938162 cites W1990077866 @default.
- W4382938162 cites W1995105354 @default.
- W4382938162 cites W2014579544 @default.
- W4382938162 cites W2016034459 @default.
- W4382938162 cites W2025287573 @default.
- W4382938162 cites W2075595889 @default.
- W4382938162 cites W2080574972 @default.
- W4382938162 cites W2111355391 @default.
- W4382938162 cites W2146143532 @default.
- W4382938162 cites W2148430292 @default.
- W4382938162 cites W2259215184 @default.
- W4382938162 cites W2261902407 @default.
- W4382938162 cites W2299930271 @default.
- W4382938162 cites W2494903407 @default.
- W4382938162 cites W2508326151 @default.
- W4382938162 cites W2593239660 @default.
- W4382938162 cites W2595834889 @default.
- W4382938162 cites W2736657553 @default.
- W4382938162 cites W2739183772 @default.
- W4382938162 cites W2741574707 @default.
- W4382938162 cites W2744484541 @default.
- W4382938162 cites W2762367303 @default.
- W4382938162 cites W2791058004 @default.
- W4382938162 cites W2796229351 @default.
- W4382938162 cites W2799496735 @default.
- W4382938162 cites W2911964244 @default.
- W4382938162 cites W2912171960 @default.
- W4382938162 cites W2913159621 @default.
- W4382938162 cites W2914427457 @default.
- W4382938162 cites W2922049076 @default.
- W4382938162 cites W2922468642 @default.
- W4382938162 cites W2954872814 @default.
- W4382938162 cites W2956046114 @default.
- W4382938162 cites W2957144537 @default.
- W4382938162 cites W2980439464 @default.
- W4382938162 cites W2981593109 @default.
- W4382938162 cites W2990386917 @default.
- W4382938162 cites W3014163350 @default.
- W4382938162 cites W3016989108 @default.
- W4382938162 cites W3095111469 @default.
- W4382938162 cites W3098586905 @default.
- W4382938162 cites W3130565475 @default.
- W4382938162 cites W3133662934 @default.
- W4382938162 cites W3216959350 @default.
- W4382938162 cites W4207025509 @default.
- W4382938162 cites W4210398612 @default.
- W4382938162 cites W4214750682 @default.
- W4382938162 cites W4220708205 @default.
- W4382938162 cites W4221091034 @default.
- W4382938162 cites W4229797948 @default.
- W4382938162 cites W4252601915 @default.
- W4382938162 cites W4285585510 @default.
- W4382938162 cites W4297957988 @default.
- W4382938162 cites W4306249047 @default.
- W4382938162 cites W4365455511 @default.
- W4382938162 cites W4368377142 @default.
- W4382938162 doi "https://doi.org/10.1007/s10845-023-02170-9" @default.
- W4382938162 hasPublicationYear "2023" @default.
- W4382938162 type Work @default.
- W4382938162 citedByCount "0" @default.
- W4382938162 crossrefType "journal-article" @default.
- W4382938162 hasAuthorship W4382938162A5024123148 @default.
- W4382938162 hasAuthorship W4382938162A5081468727 @default.
- W4382938162 hasBestOaLocation W43829381621 @default.
- W4382938162 hasConcept C11413529 @default.
- W4382938162 hasConcept C119857082 @default.
- W4382938162 hasConcept C154945302 @default.
- W4382938162 hasConcept C159985019 @default.
- W4382938162 hasConcept C192562407 @default.
- W4382938162 hasConcept C41008148 @default.
- W4382938162 hasConcept C50644808 @default.
- W4382938162 hasConcept C6648577 @default.
- W4382938162 hasConceptScore W4382938162C11413529 @default.
- W4382938162 hasConceptScore W4382938162C119857082 @default.
- W4382938162 hasConceptScore W4382938162C154945302 @default.
- W4382938162 hasConceptScore W4382938162C159985019 @default.
- W4382938162 hasConceptScore W4382938162C192562407 @default.
- W4382938162 hasConceptScore W4382938162C41008148 @default.
- W4382938162 hasConceptScore W4382938162C50644808 @default.
- W4382938162 hasConceptScore W4382938162C6648577 @default.
- W4382938162 hasFunder F4320334627 @default.
- W4382938162 hasLocation W43829381621 @default.
- W4382938162 hasOpenAccess W4382938162 @default.
- W4382938162 hasPrimaryLocation W43829381621 @default.
- W4382938162 hasRelatedWork W1974493212 @default.
- W4382938162 hasRelatedWork W1977509873 @default.
- W4382938162 hasRelatedWork W2075580692 @default.
- W4382938162 hasRelatedWork W2121036907 @default.
- W4382938162 hasRelatedWork W2123750560 @default.
- W4382938162 hasRelatedWork W2370046024 @default.