Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382940894> ?p ?o ?g. }
- W4382940894 abstract "Introduction: The development of skeletal muscle is regulated by regulatory factors of genes and non-coding RNAs (ncRNAs). Methods: The objective of this study was to understand the transformation of muscle fiber type in the longissimus dorsi muscle of male Ningxiang pigs at four different growth stages (30, 90, 150, and 210 days after birth, n = 3) by histological analysis and whole transcriptome sequencing. Additionally, the study investigated the expression patterns of various RNAs involved in muscle fiber transformation and constructed a regulatory network for competing endogenous RNA (ceRNA) that includes circular RNA (circRNA)/long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA). Results: Histomorphology analysis showed that the diameter of muscle fiber reached its maximum at 150 days after birth. The slow muscle fiber transformation showed a pattern of initial decrease followed by an increase. 29,963 circRNAs, 2,683 lncRNAs, 986 miRNAs and 22,411 mRNAs with expression level ≥0 were identified by whole transcriptome sequencing. Furthermore, 642 differentially expressed circRNAs (DEc), 505 differentially expressed lncRNAs (DEl), 316 differentially expressed miRNAs (DEmi) and 6,090 differentially expressed mRNAs (DEm) were identified by differential expression analysis. Functions of differentially expressed mRNA were identified by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO enrichment analysis indicates that 40 known genes and 6 new genes are associated with skeletal muscle development. Additionally, KEGG analysis shows that these genes regulate skeletal muscle development via MAPK, FoxO, Hedgehog, PI3K-Akt, Notch, VEGF and other signaling pathways. Through protein-protein interaction (PPI) and transcription factor prediction (TFP), the action mode of skeletal muscle-related genes was explored. PPI analysis showed that there were stable interactions among 19 proteins, meanwhile, TFP analysis predicted 22 transcription factors such as HMG20B, MYF6, MYOD1 and MYOG, and 12 of the 19 interacting proteins were transcription factors. The regulatory network of ceRNA related to skeletal muscle development was constructed based on the correlation of various RNA expression levels and the targeted binding characteristics with miRNA. The regulatory network included 31 DEms, 59 miRNAs, 667 circRNAs and 224 lncRNAs. conclusion: Overall, the study revealed the role of ceRNA regulatory network in the transformation of skeletal muscle fiber types in Ningxiang pigs, which contributes to the understanding of ceRNA regulatory network in Ningxiang pigs during the skeletal muscle development period." @default.
- W4382940894 created "2023-07-04" @default.
- W4382940894 creator A5007154734 @default.
- W4382940894 creator A5010193064 @default.
- W4382940894 creator A5012949593 @default.
- W4382940894 creator A5019743484 @default.
- W4382940894 creator A5022282342 @default.
- W4382940894 creator A5050469940 @default.
- W4382940894 creator A5050789305 @default.
- W4382940894 creator A5062110167 @default.
- W4382940894 creator A5078740157 @default.
- W4382940894 creator A5081717691 @default.
- W4382940894 creator A5084693345 @default.
- W4382940894 creator A5087358323 @default.
- W4382940894 date "2023-07-03" @default.
- W4382940894 modified "2023-09-25" @default.
- W4382940894 title "Integrated analysis of circRNA, lncRNA, miRNA and mRNA to reveal the ceRNA regulatory network of postnatal skeletal muscle development in Ningxiang pig" @default.
- W4382940894 cites W116808744 @default.
- W4382940894 cites W1497895148 @default.
- W4382940894 cites W1566143144 @default.
- W4382940894 cites W1996688443 @default.
- W4382940894 cites W1998585323 @default.
- W4382940894 cites W2017075649 @default.
- W4382940894 cites W2027847170 @default.
- W4382940894 cites W2031360789 @default.
- W4382940894 cites W2046387002 @default.
- W4382940894 cites W2058835062 @default.
- W4382940894 cites W2061548680 @default.
- W4382940894 cites W2063896920 @default.
- W4382940894 cites W2064165694 @default.
- W4382940894 cites W2083509286 @default.
- W4382940894 cites W2102278945 @default.
- W4382940894 cites W2107383402 @default.
- W4382940894 cites W2110884132 @default.
- W4382940894 cites W2124871329 @default.
- W4382940894 cites W2145931730 @default.
- W4382940894 cites W2147806662 @default.
- W4382940894 cites W2155142785 @default.
- W4382940894 cites W2158600299 @default.
- W4382940894 cites W2160030455 @default.
- W4382940894 cites W2179438025 @default.
- W4382940894 cites W2335925808 @default.
- W4382940894 cites W237692706 @default.
- W4382940894 cites W2410489113 @default.
- W4382940894 cites W2547535920 @default.
- W4382940894 cites W2599812844 @default.
- W4382940894 cites W2615786037 @default.
- W4382940894 cites W2786741514 @default.
- W4382940894 cites W2891678790 @default.
- W4382940894 cites W2918911012 @default.
- W4382940894 cites W2921251124 @default.
- W4382940894 cites W2924643358 @default.
- W4382940894 cites W2960309723 @default.
- W4382940894 cites W2973346174 @default.
- W4382940894 cites W2990680059 @default.
- W4382940894 cites W3011102471 @default.
- W4382940894 cites W3032219820 @default.
- W4382940894 cites W3101699079 @default.
- W4382940894 cites W3112203607 @default.
- W4382940894 cites W3117761584 @default.
- W4382940894 cites W3124817551 @default.
- W4382940894 cites W3136111639 @default.
- W4382940894 cites W3142874428 @default.
- W4382940894 cites W3182888986 @default.
- W4382940894 cites W3199807803 @default.
- W4382940894 cites W3207155174 @default.
- W4382940894 cites W3214510253 @default.
- W4382940894 cites W4224281829 @default.
- W4382940894 cites W4225130243 @default.
- W4382940894 cites W4225497286 @default.
- W4382940894 cites W4282833522 @default.
- W4382940894 cites W4283783776 @default.
- W4382940894 cites W4288438270 @default.
- W4382940894 cites W4289130575 @default.
- W4382940894 cites W4304136144 @default.
- W4382940894 cites W4309093641 @default.
- W4382940894 cites W4313245571 @default.
- W4382940894 cites W4313245992 @default.
- W4382940894 cites W4318484942 @default.
- W4382940894 cites W4320731163 @default.
- W4382940894 doi "https://doi.org/10.3389/fcell.2023.1185823" @default.
- W4382940894 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37465009" @default.
- W4382940894 hasPublicationYear "2023" @default.
- W4382940894 type Work @default.
- W4382940894 citedByCount "0" @default.
- W4382940894 crossrefType "journal-article" @default.
- W4382940894 hasAuthorship W4382940894A5007154734 @default.
- W4382940894 hasAuthorship W4382940894A5010193064 @default.
- W4382940894 hasAuthorship W4382940894A5012949593 @default.
- W4382940894 hasAuthorship W4382940894A5019743484 @default.
- W4382940894 hasAuthorship W4382940894A5022282342 @default.
- W4382940894 hasAuthorship W4382940894A5050469940 @default.
- W4382940894 hasAuthorship W4382940894A5050789305 @default.
- W4382940894 hasAuthorship W4382940894A5062110167 @default.
- W4382940894 hasAuthorship W4382940894A5078740157 @default.
- W4382940894 hasAuthorship W4382940894A5081717691 @default.
- W4382940894 hasAuthorship W4382940894A5084693345 @default.
- W4382940894 hasAuthorship W4382940894A5087358323 @default.
- W4382940894 hasBestOaLocation W43829408941 @default.
- W4382940894 hasConcept C104317684 @default.