Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382982287> ?p ?o ?g. }
- W4382982287 endingPage "3463" @default.
- W4382982287 startingPage "3463" @default.
- W4382982287 abstract "(1) In this study, we developed a deep learning (DL) model that can be used to predict late bladder toxicity. (2) We collected data obtained from 281 uterine cervical cancer patients who underwent definitive radiation therapy. The DL model was trained using 16 features, including patient, tumor, treatment, and dose parameters, and its performance was compared with that of a multivariable logistic regression model using the following metrics: accuracy, prediction, recall, F1-score, and area under the receiver operating characteristic curve (AUROC). In addition, permutation feature importance was calculated to interpret the DL model for each feature, and the lightweight DL model was designed to focus on the top five important features. (3) The DL model outperformed the multivariable logistic regression model on our dataset. It achieved an F1-score of 0.76 and an AUROC of 0.81, while the corresponding values for the multivariable logistic regression were 0.14 and 0.43, respectively. The DL model identified the doses for the most exposed 2 cc volume of the bladder (BD2cc) as the most important feature, followed by BD5cc and the ICRU bladder point. In the case of the lightweight DL model, the F-score and AUROC were 0.90 and 0.91, respectively. (4) The DL models exhibited superior performance in predicting late bladder toxicity compared with the statistical method. Through the interpretation of the model, it further emphasized its potential for improving patient outcomes and minimizing treatment-related complications with a high level of reliability." @default.
- W4382982287 created "2023-07-04" @default.
- W4382982287 creator A5005747362 @default.
- W4382982287 creator A5008035486 @default.
- W4382982287 creator A5008985186 @default.
- W4382982287 creator A5020398532 @default.
- W4382982287 creator A5023481180 @default.
- W4382982287 creator A5032890132 @default.
- W4382982287 creator A5063070698 @default.
- W4382982287 creator A5063742243 @default.
- W4382982287 creator A5076976432 @default.
- W4382982287 creator A5079450643 @default.
- W4382982287 creator A5084224456 @default.
- W4382982287 date "2023-07-02" @default.
- W4382982287 modified "2023-10-17" @default.
- W4382982287 title "Feature Importance Analysis of a Deep Learning Model for Predicting Late Bladder Toxicity Occurrence in Uterine Cervical Cancer Patients" @default.
- W4382982287 cites W1518653822 @default.
- W4382982287 cites W1964242817 @default.
- W4382982287 cites W1970073810 @default.
- W4382982287 cites W1971234611 @default.
- W4382982287 cites W1987335726 @default.
- W4382982287 cites W1994922565 @default.
- W4382982287 cites W1995761318 @default.
- W4382982287 cites W1998214642 @default.
- W4382982287 cites W2032967189 @default.
- W4382982287 cites W2040085036 @default.
- W4382982287 cites W2043945205 @default.
- W4382982287 cites W2045085260 @default.
- W4382982287 cites W2069491220 @default.
- W4382982287 cites W2075491277 @default.
- W4382982287 cites W2080875706 @default.
- W4382982287 cites W2097945491 @default.
- W4382982287 cites W2102636708 @default.
- W4382982287 cites W2121394390 @default.
- W4382982287 cites W2122321342 @default.
- W4382982287 cites W2131860931 @default.
- W4382982287 cites W2152385240 @default.
- W4382982287 cites W2480089904 @default.
- W4382982287 cites W2509418529 @default.
- W4382982287 cites W2549947571 @default.
- W4382982287 cites W2612508535 @default.
- W4382982287 cites W2742366641 @default.
- W4382982287 cites W2756456050 @default.
- W4382982287 cites W2793434371 @default.
- W4382982287 cites W2852995413 @default.
- W4382982287 cites W2905889700 @default.
- W4382982287 cites W2912734771 @default.
- W4382982287 cites W2946449963 @default.
- W4382982287 cites W2955580176 @default.
- W4382982287 cites W3013902489 @default.
- W4382982287 cites W3016413122 @default.
- W4382982287 cites W3024389542 @default.
- W4382982287 cites W3091782902 @default.
- W4382982287 cites W3118697354 @default.
- W4382982287 cites W3121678941 @default.
- W4382982287 cites W3160401844 @default.
- W4382982287 cites W3196572944 @default.
- W4382982287 cites W4200564159 @default.
- W4382982287 cites W4294839477 @default.
- W4382982287 cites W4295808856 @default.
- W4382982287 cites W4311229858 @default.
- W4382982287 doi "https://doi.org/10.3390/cancers15133463" @default.
- W4382982287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37444573" @default.
- W4382982287 hasPublicationYear "2023" @default.
- W4382982287 type Work @default.
- W4382982287 citedByCount "1" @default.
- W4382982287 countsByYear W43829822872023 @default.
- W4382982287 crossrefType "journal-article" @default.
- W4382982287 hasAuthorship W4382982287A5005747362 @default.
- W4382982287 hasAuthorship W4382982287A5008035486 @default.
- W4382982287 hasAuthorship W4382982287A5008985186 @default.
- W4382982287 hasAuthorship W4382982287A5020398532 @default.
- W4382982287 hasAuthorship W4382982287A5023481180 @default.
- W4382982287 hasAuthorship W4382982287A5032890132 @default.
- W4382982287 hasAuthorship W4382982287A5063070698 @default.
- W4382982287 hasAuthorship W4382982287A5063742243 @default.
- W4382982287 hasAuthorship W4382982287A5076976432 @default.
- W4382982287 hasAuthorship W4382982287A5079450643 @default.
- W4382982287 hasAuthorship W4382982287A5084224456 @default.
- W4382982287 hasBestOaLocation W43829822871 @default.
- W4382982287 hasConcept C117312493 @default.
- W4382982287 hasConcept C121608353 @default.
- W4382982287 hasConcept C126322002 @default.
- W4382982287 hasConcept C127413603 @default.
- W4382982287 hasConcept C133731056 @default.
- W4382982287 hasConcept C138885662 @default.
- W4382982287 hasConcept C143998085 @default.
- W4382982287 hasConcept C151956035 @default.
- W4382982287 hasConcept C154945302 @default.
- W4382982287 hasConcept C2776401178 @default.
- W4382982287 hasConcept C2778220009 @default.
- W4382982287 hasConcept C2780352672 @default.
- W4382982287 hasConcept C41008148 @default.
- W4382982287 hasConcept C41895202 @default.
- W4382982287 hasConcept C58471807 @default.
- W4382982287 hasConcept C71924100 @default.
- W4382982287 hasConceptScore W4382982287C117312493 @default.
- W4382982287 hasConceptScore W4382982287C121608353 @default.