Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382983103> ?p ?o ?g. }
- W4382983103 endingPage "4434" @default.
- W4382983103 startingPage "4434" @default.
- W4382983103 abstract "Background: Inadvertent intraoperative hypothermia is a common complication that affects patient comfort and morbidity. As the development of hypothermia is a complex phenomenon, predicting it using machine learning (ML) algorithms may be superior to logistic regression. Methods: We performed a single-center retrospective study and assembled a feature set comprised of 71 variables. The primary outcome was hypothermia burden, defined as the area under the intraoperative temperature curve below 37 °C over time. We built seven prediction models (logistic regression, extreme gradient boosting (XGBoost), random forest (RF), multi-layer perceptron neural network (MLP), linear discriminant analysis (LDA), k-nearest neighbor (KNN), and Gaussian naïve Bayes (GNB)) to predict whether patients would not develop hypothermia or would develop mild, moderate, or severe hypothermia. For each model, we assessed discrimination (F1 score, area under the receiver operating curve, precision, recall) and calibration (calibration-in-the-large, calibration intercept, calibration slope). Results: We included data from 87,116 anesthesia cases. Predicting the hypothermia burden group using logistic regression yielded a weighted F1 score of 0.397. Ranked from highest to lowest weighted F1 score, the ML algorithms performed as follows: XGBoost (0.44), RF (0.418), LDA (0.406), LDA (0.4), KNN (0.362), and GNB (0.32). Conclusions: ML is suitable for predicting intraoperative hypothermia and could be applied in clinical practice." @default.
- W4382983103 created "2023-07-04" @default.
- W4382983103 creator A5026311817 @default.
- W4382983103 creator A5059157192 @default.
- W4382983103 creator A5073340029 @default.
- W4382983103 creator A5082224954 @default.
- W4382983103 creator A5089544813 @default.
- W4382983103 date "2023-06-30" @default.
- W4382983103 modified "2023-09-26" @default.
- W4382983103 title "Predicting Intraoperative Hypothermia Burden during Non-Cardiac Surgery: A Retrospective Study Comparing Regression to Six Machine Learning Algorithms" @default.
- W4382983103 cites W1828934036 @default.
- W4382983103 cites W1863461180 @default.
- W4382983103 cites W2001380312 @default.
- W4382983103 cites W2045030413 @default.
- W4382983103 cites W2069668391 @default.
- W4382983103 cites W2084086178 @default.
- W4382983103 cites W2106671991 @default.
- W4382983103 cites W2117624755 @default.
- W4382983103 cites W2142931839 @default.
- W4382983103 cites W2225109326 @default.
- W4382983103 cites W2230981777 @default.
- W4382983103 cites W2496911238 @default.
- W4382983103 cites W2547989428 @default.
- W4382983103 cites W2787894218 @default.
- W4382983103 cites W2885185690 @default.
- W4382983103 cites W2897429045 @default.
- W4382983103 cites W2913997948 @default.
- W4382983103 cites W2980769368 @default.
- W4382983103 cites W2994044296 @default.
- W4382983103 cites W2995283297 @default.
- W4382983103 cites W2997957839 @default.
- W4382983103 cites W3007453563 @default.
- W4382983103 cites W3049692611 @default.
- W4382983103 cites W3087070691 @default.
- W4382983103 cites W3091885289 @default.
- W4382983103 cites W3102476541 @default.
- W4382983103 cites W3212319580 @default.
- W4382983103 cites W4200119790 @default.
- W4382983103 cites W4226146317 @default.
- W4382983103 doi "https://doi.org/10.3390/jcm12134434" @default.
- W4382983103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37445469" @default.
- W4382983103 hasPublicationYear "2023" @default.
- W4382983103 type Work @default.
- W4382983103 citedByCount "0" @default.
- W4382983103 crossrefType "journal-article" @default.
- W4382983103 hasAuthorship W4382983103A5026311817 @default.
- W4382983103 hasAuthorship W4382983103A5059157192 @default.
- W4382983103 hasAuthorship W4382983103A5073340029 @default.
- W4382983103 hasAuthorship W4382983103A5082224954 @default.
- W4382983103 hasAuthorship W4382983103A5089544813 @default.
- W4382983103 hasBestOaLocation W43829831031 @default.
- W4382983103 hasConcept C105795698 @default.
- W4382983103 hasConcept C11413529 @default.
- W4382983103 hasConcept C119857082 @default.
- W4382983103 hasConcept C126322002 @default.
- W4382983103 hasConcept C141071460 @default.
- W4382983103 hasConcept C151956035 @default.
- W4382983103 hasConcept C154945302 @default.
- W4382983103 hasConcept C165838908 @default.
- W4382983103 hasConcept C167135981 @default.
- W4382983103 hasConcept C169258074 @default.
- W4382983103 hasConcept C2777390192 @default.
- W4382983103 hasConcept C33923547 @default.
- W4382983103 hasConcept C41008148 @default.
- W4382983103 hasConcept C42219234 @default.
- W4382983103 hasConcept C58471807 @default.
- W4382983103 hasConcept C69738355 @default.
- W4382983103 hasConcept C70153297 @default.
- W4382983103 hasConcept C71924100 @default.
- W4382983103 hasConceptScore W4382983103C105795698 @default.
- W4382983103 hasConceptScore W4382983103C11413529 @default.
- W4382983103 hasConceptScore W4382983103C119857082 @default.
- W4382983103 hasConceptScore W4382983103C126322002 @default.
- W4382983103 hasConceptScore W4382983103C141071460 @default.
- W4382983103 hasConceptScore W4382983103C151956035 @default.
- W4382983103 hasConceptScore W4382983103C154945302 @default.
- W4382983103 hasConceptScore W4382983103C165838908 @default.
- W4382983103 hasConceptScore W4382983103C167135981 @default.
- W4382983103 hasConceptScore W4382983103C169258074 @default.
- W4382983103 hasConceptScore W4382983103C2777390192 @default.
- W4382983103 hasConceptScore W4382983103C33923547 @default.
- W4382983103 hasConceptScore W4382983103C41008148 @default.
- W4382983103 hasConceptScore W4382983103C42219234 @default.
- W4382983103 hasConceptScore W4382983103C58471807 @default.
- W4382983103 hasConceptScore W4382983103C69738355 @default.
- W4382983103 hasConceptScore W4382983103C70153297 @default.
- W4382983103 hasConceptScore W4382983103C71924100 @default.
- W4382983103 hasIssue "13" @default.
- W4382983103 hasLocation W43829831031 @default.
- W4382983103 hasLocation W43829831032 @default.
- W4382983103 hasLocation W43829831033 @default.
- W4382983103 hasOpenAccess W4382983103 @default.
- W4382983103 hasPrimaryLocation W43829831031 @default.
- W4382983103 hasRelatedWork W2347937125 @default.
- W4382983103 hasRelatedWork W2605253636 @default.
- W4382983103 hasRelatedWork W2804210803 @default.
- W4382983103 hasRelatedWork W2911455822 @default.
- W4382983103 hasRelatedWork W2987667774 @default.