Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382989239> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4382989239 abstract "1. INTRODUCTIONThe continuous pursuit of better image classification AI models is crucial for several reasons. (1) Improved Accuracy: The primary goal of developing better models is to improve accuracy. Higher accuracy means the model can correctly classify more images, which is beneficial in many applications, including plant disease recognition. For instance, a more accurate model could lead to earlier detection of diseases [1]. (2) Efficiency: Better models can also be more efficient, requiring less computational resources or less time to train or make predictions. This is particularly important in real-time applications, such as image/video processing or in devices with limited computational power [2]. (3) Robustness: Improved models can be more robust to variations in the input data, such as changes in lighting, viewpoint, or scale. This is crucial for many real-world applications where these conditions can’t be controlled [3]. (4) Generalization: Better models can generalize more effectively to new, unseen data. This is important because a model’s ultimate purpose is to make accurate predictions on new data, not just the data it was trained on [4]. (5) Interpretability: As AI models are increasingly used in decision-making, it’s important that they’re interpretable, meaning that their predictions can be understood and explained by humans. Better models can provide more interpretable predictions, increasing trust and acceptance of AI systems [5]. (6) Fairness: Improved models can also be designed to be fairer, reducing bias in their predictions. This is particularly important in applications where biased predictions can have serious consequences [6]. Further to the foregoing, we set out to present an improved feature extraction ConvNet for better plant disease recognition (calledDetection )." @default.
- W4382989239 created "2023-07-04" @default.
- W4382989239 creator A5006448496 @default.
- W4382989239 creator A5025818619 @default.
- W4382989239 creator A5090135434 @default.
- W4382989239 date "2023-07-03" @default.
- W4382989239 modified "2023-09-27" @default.
- W4382989239 title "Detection: A convolutional network method for plant disease recognition" @default.
- W4382989239 doi "https://doi.org/10.22541/au.168840291.12371020/v1" @default.
- W4382989239 hasPublicationYear "2023" @default.
- W4382989239 type Work @default.
- W4382989239 citedByCount "0" @default.
- W4382989239 crossrefType "posted-content" @default.
- W4382989239 hasAuthorship W4382989239A5006448496 @default.
- W4382989239 hasAuthorship W4382989239A5025818619 @default.
- W4382989239 hasAuthorship W4382989239A5090135434 @default.
- W4382989239 hasBestOaLocation W43829892391 @default.
- W4382989239 hasConcept C104317684 @default.
- W4382989239 hasConcept C119857082 @default.
- W4382989239 hasConcept C124101348 @default.
- W4382989239 hasConcept C134306372 @default.
- W4382989239 hasConcept C154945302 @default.
- W4382989239 hasConcept C177148314 @default.
- W4382989239 hasConcept C185592680 @default.
- W4382989239 hasConcept C2781067378 @default.
- W4382989239 hasConcept C33923547 @default.
- W4382989239 hasConcept C41008148 @default.
- W4382989239 hasConcept C55493867 @default.
- W4382989239 hasConcept C63479239 @default.
- W4382989239 hasConcept C81363708 @default.
- W4382989239 hasConceptScore W4382989239C104317684 @default.
- W4382989239 hasConceptScore W4382989239C119857082 @default.
- W4382989239 hasConceptScore W4382989239C124101348 @default.
- W4382989239 hasConceptScore W4382989239C134306372 @default.
- W4382989239 hasConceptScore W4382989239C154945302 @default.
- W4382989239 hasConceptScore W4382989239C177148314 @default.
- W4382989239 hasConceptScore W4382989239C185592680 @default.
- W4382989239 hasConceptScore W4382989239C2781067378 @default.
- W4382989239 hasConceptScore W4382989239C33923547 @default.
- W4382989239 hasConceptScore W4382989239C41008148 @default.
- W4382989239 hasConceptScore W4382989239C55493867 @default.
- W4382989239 hasConceptScore W4382989239C63479239 @default.
- W4382989239 hasConceptScore W4382989239C81363708 @default.
- W4382989239 hasLocation W43829892391 @default.
- W4382989239 hasOpenAccess W4382989239 @default.
- W4382989239 hasPrimaryLocation W43829892391 @default.
- W4382989239 hasRelatedWork W3006943036 @default.
- W4382989239 hasRelatedWork W3027997911 @default.
- W4382989239 hasRelatedWork W4200027074 @default.
- W4382989239 hasRelatedWork W4200511449 @default.
- W4382989239 hasRelatedWork W4206534706 @default.
- W4382989239 hasRelatedWork W4211177414 @default.
- W4382989239 hasRelatedWork W4229079080 @default.
- W4382989239 hasRelatedWork W4287776258 @default.
- W4382989239 hasRelatedWork W4310880831 @default.
- W4382989239 hasRelatedWork W4385415357 @default.
- W4382989239 isParatext "false" @default.
- W4382989239 isRetracted "false" @default.
- W4382989239 workType "article" @default.