Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382992893> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4382992893 abstract "Abstract The effects of anthropogenic aerosol, solid or liquid particles suspended in the air, are the biggest contributor to uncertainty in current climate perturbations. Heavy industry sites, such as coal power plants and steel manufacturers, large sources of greenhouse gases, also emit large amounts of aerosol in a small area. This makes them ideal places to study aerosol interactions with radiation and clouds. However, existing data sets of heavy industry locations are either not public, or suffer from reporting gaps. Here, we develop a supervised deep learning algorithm to detect unreported industry sites in high-resolution satellite data, using the existing data sets for training. For the pipeline to be viable at global scale, we employ a two-step approach. The first step uses 10 m resolution data, which is scanned for potential industry sites, before using 1.2 m resolution images to confirm or reject detections. On held-out test data, the models perform well, with the lower resolution one reaching up to 94% accuracy. Deployed to a large test region, the first stage model yields many false positive detections. The second stage, higher resolution model shows promising results at filtering these out, while keeping the true positives, improving the precision to 42% overall, so that human review becomes feasible. In the deployment area, we find five new heavy industry sites which were not in the training data. This demonstrates that the approach can be used to complement existing data sets of heavy industry sites." @default.
- W4382992893 created "2023-07-04" @default.
- W4382992893 creator A5019776645 @default.
- W4382992893 creator A5041301418 @default.
- W4382992893 creator A5057962913 @default.
- W4382992893 creator A5058895036 @default.
- W4382992893 creator A5081450448 @default.
- W4382992893 creator A5087195102 @default.
- W4382992893 creator A5087616218 @default.
- W4382992893 date "2023-01-01" @default.
- W4382992893 modified "2023-10-07" @default.
- W4382992893 title "Pollution tracker: Finding industrial sources of aerosol emission in satellite imagery" @default.
- W4382992893 cites W1978316624 @default.
- W4382992893 cites W2108598243 @default.
- W4382992893 cites W2153660386 @default.
- W4382992893 cites W2626678185 @default.
- W4382992893 cites W2965102826 @default.
- W4382992893 cites W3204719315 @default.
- W4382992893 cites W4210647337 @default.
- W4382992893 cites W4221040734 @default.
- W4382992893 cites W4300594366 @default.
- W4382992893 cites W4302010824 @default.
- W4382992893 doi "https://doi.org/10.1017/eds.2023.20" @default.
- W4382992893 hasPublicationYear "2023" @default.
- W4382992893 type Work @default.
- W4382992893 citedByCount "0" @default.
- W4382992893 crossrefType "journal-article" @default.
- W4382992893 hasAuthorship W4382992893A5019776645 @default.
- W4382992893 hasAuthorship W4382992893A5041301418 @default.
- W4382992893 hasAuthorship W4382992893A5057962913 @default.
- W4382992893 hasAuthorship W4382992893A5058895036 @default.
- W4382992893 hasAuthorship W4382992893A5081450448 @default.
- W4382992893 hasAuthorship W4382992893A5087195102 @default.
- W4382992893 hasAuthorship W4382992893A5087616218 @default.
- W4382992893 hasBestOaLocation W43829928931 @default.
- W4382992893 hasConcept C105339364 @default.
- W4382992893 hasConcept C111919701 @default.
- W4382992893 hasConcept C127413603 @default.
- W4382992893 hasConcept C146978453 @default.
- W4382992893 hasConcept C153294291 @default.
- W4382992893 hasConcept C154945302 @default.
- W4382992893 hasConcept C19269812 @default.
- W4382992893 hasConcept C199360897 @default.
- W4382992893 hasConcept C205372480 @default.
- W4382992893 hasConcept C205649164 @default.
- W4382992893 hasConcept C2779345167 @default.
- W4382992893 hasConcept C39432304 @default.
- W4382992893 hasConcept C41008148 @default.
- W4382992893 hasConcept C43521106 @default.
- W4382992893 hasConcept C62649853 @default.
- W4382992893 hasConceptScore W4382992893C105339364 @default.
- W4382992893 hasConceptScore W4382992893C111919701 @default.
- W4382992893 hasConceptScore W4382992893C127413603 @default.
- W4382992893 hasConceptScore W4382992893C146978453 @default.
- W4382992893 hasConceptScore W4382992893C153294291 @default.
- W4382992893 hasConceptScore W4382992893C154945302 @default.
- W4382992893 hasConceptScore W4382992893C19269812 @default.
- W4382992893 hasConceptScore W4382992893C199360897 @default.
- W4382992893 hasConceptScore W4382992893C205372480 @default.
- W4382992893 hasConceptScore W4382992893C205649164 @default.
- W4382992893 hasConceptScore W4382992893C2779345167 @default.
- W4382992893 hasConceptScore W4382992893C39432304 @default.
- W4382992893 hasConceptScore W4382992893C41008148 @default.
- W4382992893 hasConceptScore W4382992893C43521106 @default.
- W4382992893 hasConceptScore W4382992893C62649853 @default.
- W4382992893 hasFunder F4320334631 @default.
- W4382992893 hasFunder F4320338335 @default.
- W4382992893 hasLocation W43829928931 @default.
- W4382992893 hasOpenAccess W4382992893 @default.
- W4382992893 hasPrimaryLocation W43829928931 @default.
- W4382992893 hasRelatedWork W1481661428 @default.
- W4382992893 hasRelatedWork W1571348832 @default.
- W4382992893 hasRelatedWork W1970536254 @default.
- W4382992893 hasRelatedWork W2049539733 @default.
- W4382992893 hasRelatedWork W2116047388 @default.
- W4382992893 hasRelatedWork W2142105943 @default.
- W4382992893 hasRelatedWork W2171152108 @default.
- W4382992893 hasRelatedWork W2172971994 @default.
- W4382992893 hasRelatedWork W2203158480 @default.
- W4382992893 hasRelatedWork W2752246969 @default.
- W4382992893 hasVolume "2" @default.
- W4382992893 isParatext "false" @default.
- W4382992893 isRetracted "false" @default.
- W4382992893 workType "article" @default.