Matches in SemOpenAlex for { <https://semopenalex.org/work/W4382998700> ?p ?o ?g. }
- W4382998700 endingPage "13" @default.
- W4382998700 startingPage "1" @default.
- W4382998700 abstract "Power system condition prediction is to predict key parameters such as voltage and current of its main components to ensure the reliability and safety of electrical system operation. However, as satellite missions and operating conditions become more complex, the state of electrical systems is affected by satellite loads and platforms. Therefore, it is difficult for offline-trained state prediction models to dynamically adapt to changing operating conditions and changing relationships between parameters. To overcome these problems, an online deep learning method, On-line Rules-limited Temporal Convolutional Network (O-R-TCN ), is proposed to improve the adaptability of the state prediction method. Firstly, a temporal convolutional network (TCN) online weight update method based on a recursive extreme learning machine is proposed, which realizes the self-learning of dynamic parameter relations under dynamic operation conditions to obtain higher prediction accuracy. Moreover, considering that anomalies within the monitored data may lead to undesired model updating, an association rule mining approach is proposed based on the Frequent Pattern-Growth (FP-Growth) fusion with trend sign aggregation approximation (TSAX). Avoid model updates caused by system exceptions or failures. Experiments are implemented based on the actual satellite power system telemetry data. The results illustrate that the proposed method can self-learn the varying relationship between the parameters and update the state prediction model during the working state change. At the same time, abnormal data can be effectively detected by the association rule, which ensures the effectiveness of the proposed method." @default.
- W4382998700 created "2023-07-04" @default.
- W4382998700 creator A5016137970 @default.
- W4382998700 creator A5029324257 @default.
- W4382998700 creator A5065947603 @default.
- W4382998700 creator A5069388802 @default.
- W4382998700 creator A5069614972 @default.
- W4382998700 date "2023-01-01" @default.
- W4382998700 modified "2023-10-15" @default.
- W4382998700 title "Satellite Power System State Prediction based on Online Learning with Parameter Association Rules" @default.
- W4382998700 cites W1972985055 @default.
- W4382998700 cites W2012346040 @default.
- W4382998700 cites W2052623634 @default.
- W4382998700 cites W2083808869 @default.
- W4382998700 cites W2087851524 @default.
- W4382998700 cites W2115482638 @default.
- W4382998700 cites W2118162660 @default.
- W4382998700 cites W2124295159 @default.
- W4382998700 cites W2146737477 @default.
- W4382998700 cites W2276290751 @default.
- W4382998700 cites W2299567191 @default.
- W4382998700 cites W2566512888 @default.
- W4382998700 cites W2593048559 @default.
- W4382998700 cites W2758462749 @default.
- W4382998700 cites W2781930323 @default.
- W4382998700 cites W2788630562 @default.
- W4382998700 cites W2890126432 @default.
- W4382998700 cites W2896475565 @default.
- W4382998700 cites W2897960558 @default.
- W4382998700 cites W2903220204 @default.
- W4382998700 cites W2912688896 @default.
- W4382998700 cites W2921600633 @default.
- W4382998700 cites W2924944420 @default.
- W4382998700 cites W2972397192 @default.
- W4382998700 cites W2977057839 @default.
- W4382998700 cites W2980748541 @default.
- W4382998700 cites W2990939830 @default.
- W4382998700 cites W2999072535 @default.
- W4382998700 cites W3010725993 @default.
- W4382998700 cites W3029120371 @default.
- W4382998700 cites W3046012967 @default.
- W4382998700 cites W3102020143 @default.
- W4382998700 cites W3109521448 @default.
- W4382998700 cites W3111335524 @default.
- W4382998700 cites W3117079068 @default.
- W4382998700 cites W3158380868 @default.
- W4382998700 cites W3162362953 @default.
- W4382998700 cites W3167548703 @default.
- W4382998700 cites W3173518156 @default.
- W4382998700 cites W3201115131 @default.
- W4382998700 cites W4205631368 @default.
- W4382998700 cites W4206675753 @default.
- W4382998700 cites W4207007999 @default.
- W4382998700 cites W4213351996 @default.
- W4382998700 cites W4225789901 @default.
- W4382998700 cites W4225871724 @default.
- W4382998700 doi "https://doi.org/10.1109/tim.2023.3291798" @default.
- W4382998700 hasPublicationYear "2023" @default.
- W4382998700 type Work @default.
- W4382998700 citedByCount "0" @default.
- W4382998700 crossrefType "journal-article" @default.
- W4382998700 hasAuthorship W4382998700A5016137970 @default.
- W4382998700 hasAuthorship W4382998700A5029324257 @default.
- W4382998700 hasAuthorship W4382998700A5065947603 @default.
- W4382998700 hasAuthorship W4382998700A5069388802 @default.
- W4382998700 hasAuthorship W4382998700A5069614972 @default.
- W4382998700 hasConcept C11413529 @default.
- W4382998700 hasConcept C119857082 @default.
- W4382998700 hasConcept C121332964 @default.
- W4382998700 hasConcept C124101348 @default.
- W4382998700 hasConcept C127413603 @default.
- W4382998700 hasConcept C146978453 @default.
- W4382998700 hasConcept C154945302 @default.
- W4382998700 hasConcept C163258240 @default.
- W4382998700 hasConcept C177606310 @default.
- W4382998700 hasConcept C18903297 @default.
- W4382998700 hasConcept C19269812 @default.
- W4382998700 hasConcept C193524817 @default.
- W4382998700 hasConcept C200601418 @default.
- W4382998700 hasConcept C26517878 @default.
- W4382998700 hasConcept C2780150128 @default.
- W4382998700 hasConcept C38652104 @default.
- W4382998700 hasConcept C41008148 @default.
- W4382998700 hasConcept C43214815 @default.
- W4382998700 hasConcept C48103436 @default.
- W4382998700 hasConcept C50644808 @default.
- W4382998700 hasConcept C62520636 @default.
- W4382998700 hasConcept C79403827 @default.
- W4382998700 hasConcept C86803240 @default.
- W4382998700 hasConcept C89227174 @default.
- W4382998700 hasConceptScore W4382998700C11413529 @default.
- W4382998700 hasConceptScore W4382998700C119857082 @default.
- W4382998700 hasConceptScore W4382998700C121332964 @default.
- W4382998700 hasConceptScore W4382998700C124101348 @default.
- W4382998700 hasConceptScore W4382998700C127413603 @default.
- W4382998700 hasConceptScore W4382998700C146978453 @default.
- W4382998700 hasConceptScore W4382998700C154945302 @default.
- W4382998700 hasConceptScore W4382998700C163258240 @default.