Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383040984> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4383040984 endingPage "106708" @default.
- W4383040984 startingPage "106708" @default.
- W4383040984 abstract "Cutter suction dredgers (CSDs) play a very important role in the construction of ports, waterways and navigational channels. Currently, most of CSDs are mainly manipulated by human operators, and a large amount of instrument data needs to be monitored in real time in case of unforeseen accidents. In order to reduce the heavy workload of the operators, we propose a data-driven offline learning approach, named Preprocessing-Prediction-Learning Control (PPLC), for obtaining the optimal control policy of the excavating operation of CSDs. The proposed framework consists of three modules, i.e., a data preprocessing module, a dynamics prediction module realized by a Convolutional Neural Network (CNN), and a deep reinforcement learning based control module. The first module is responsible for filtering out irrelevant variables through correlation analysis and dimensionality reduction of raw data. The second module works as a state transition function that provides the dynamics prediction of the excavating operation of a CSD. To realize the learning control, the third module employs the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm to control the swing speed during the excavating operation. The simulation results show that the proposed framework can provide an effective and reliable solution to the automated excavating control of a CSD." @default.
- W4383040984 created "2023-07-04" @default.
- W4383040984 creator A5014887356 @default.
- W4383040984 creator A5018537668 @default.
- W4383040984 creator A5060770237 @default.
- W4383040984 creator A5066950886 @default.
- W4383040984 creator A5068175770 @default.
- W4383040984 date "2023-10-01" @default.
- W4383040984 modified "2023-10-17" @default.
- W4383040984 title "PPLC: Data-driven offline learning approach for excavating control of cutter suction dredgers" @default.
- W4383040984 cites W2018964383 @default.
- W4383040984 cites W2025768430 @default.
- W4383040984 cites W2042507172 @default.
- W4383040984 cites W2076483594 @default.
- W4383040984 cites W2080144309 @default.
- W4383040984 cites W2145339207 @default.
- W4383040984 cites W2165700458 @default.
- W4383040984 cites W2594495318 @default.
- W4383040984 cites W2606436201 @default.
- W4383040984 cites W2791840139 @default.
- W4383040984 cites W2887199168 @default.
- W4383040984 cites W2890218953 @default.
- W4383040984 cites W2902907165 @default.
- W4383040984 cites W2932097000 @default.
- W4383040984 cites W2944033355 @default.
- W4383040984 cites W2979526564 @default.
- W4383040984 cites W3008615240 @default.
- W4383040984 cites W3014040695 @default.
- W4383040984 cites W3042915245 @default.
- W4383040984 cites W3084946223 @default.
- W4383040984 cites W3094728221 @default.
- W4383040984 cites W3167583064 @default.
- W4383040984 cites W3183452672 @default.
- W4383040984 cites W4200162182 @default.
- W4383040984 cites W4206985212 @default.
- W4383040984 cites W4210679328 @default.
- W4383040984 cites W4226524609 @default.
- W4383040984 cites W4310267233 @default.
- W4383040984 doi "https://doi.org/10.1016/j.engappai.2023.106708" @default.
- W4383040984 hasPublicationYear "2023" @default.
- W4383040984 type Work @default.
- W4383040984 citedByCount "0" @default.
- W4383040984 crossrefType "journal-article" @default.
- W4383040984 hasAuthorship W4383040984A5014887356 @default.
- W4383040984 hasAuthorship W4383040984A5018537668 @default.
- W4383040984 hasAuthorship W4383040984A5060770237 @default.
- W4383040984 hasAuthorship W4383040984A5066950886 @default.
- W4383040984 hasAuthorship W4383040984A5068175770 @default.
- W4383040984 hasBestOaLocation W43830409841 @default.
- W4383040984 hasConcept C10551718 @default.
- W4383040984 hasConcept C119857082 @default.
- W4383040984 hasConcept C132964779 @default.
- W4383040984 hasConcept C154945302 @default.
- W4383040984 hasConcept C199360897 @default.
- W4383040984 hasConcept C2775924081 @default.
- W4383040984 hasConcept C34736171 @default.
- W4383040984 hasConcept C41008148 @default.
- W4383040984 hasConcept C50644808 @default.
- W4383040984 hasConcept C70518039 @default.
- W4383040984 hasConcept C81363708 @default.
- W4383040984 hasConcept C97541855 @default.
- W4383040984 hasConceptScore W4383040984C10551718 @default.
- W4383040984 hasConceptScore W4383040984C119857082 @default.
- W4383040984 hasConceptScore W4383040984C132964779 @default.
- W4383040984 hasConceptScore W4383040984C154945302 @default.
- W4383040984 hasConceptScore W4383040984C199360897 @default.
- W4383040984 hasConceptScore W4383040984C2775924081 @default.
- W4383040984 hasConceptScore W4383040984C34736171 @default.
- W4383040984 hasConceptScore W4383040984C41008148 @default.
- W4383040984 hasConceptScore W4383040984C50644808 @default.
- W4383040984 hasConceptScore W4383040984C70518039 @default.
- W4383040984 hasConceptScore W4383040984C81363708 @default.
- W4383040984 hasConceptScore W4383040984C97541855 @default.
- W4383040984 hasLocation W43830409841 @default.
- W4383040984 hasOpenAccess W4383040984 @default.
- W4383040984 hasPrimaryLocation W43830409841 @default.
- W4383040984 hasRelatedWork W2382928216 @default.
- W4383040984 hasRelatedWork W3010890513 @default.
- W4383040984 hasRelatedWork W3021430260 @default.
- W4383040984 hasRelatedWork W3027997911 @default.
- W4383040984 hasRelatedWork W3086422166 @default.
- W4383040984 hasRelatedWork W3115502235 @default.
- W4383040984 hasRelatedWork W3138271675 @default.
- W4383040984 hasRelatedWork W4287776258 @default.
- W4383040984 hasRelatedWork W4319083788 @default.
- W4383040984 hasRelatedWork W4323546569 @default.
- W4383040984 hasVolume "125" @default.
- W4383040984 isParatext "false" @default.
- W4383040984 isRetracted "false" @default.
- W4383040984 workType "article" @default.