Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383041231> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4383041231 abstract "Deep learning-based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning-based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR).To investigate a convolutional neural network-based SR (CNN-SR) approach for simultaneous frequency-and-phase correction (FPC) of single-voxel Meshcher-Garwood point-resolved spectroscopy (MEGA-PRESS) MRS data.Retrospective.Forty thousand simulated MEGA-PRESS datasets generated from FID Appliance (FID-A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA-PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets.3T, MEGA-PRESS.Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were -20 to 20 Hz and -90° to 90° and were uniformly distributed for the simulation dataset at different signal-to-noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0-5 Hz; 0-20°), medium offsets (5-10 Hz; 20-45°), and large offsets (10-20 Hz; 45-90°).Two-tailed paired t-tests for model performances in the simulation and in vivo datasets were used and a P-value <0.05 was considered statistically significant.CNN-SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN-SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, -0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied.The proposed CNN-SR method is an efficient and accurate approach for simultaneous FPC of single-voxel MEGA-PRESS MRS data.4 TECHNICAL EFFICACY: Stage 2." @default.
- W4383041231 created "2023-07-04" @default.
- W4383041231 creator A5004294168 @default.
- W4383041231 creator A5004783101 @default.
- W4383041231 creator A5043650123 @default.
- W4383041231 creator A5046602530 @default.
- W4383041231 creator A5057372511 @default.
- W4383041231 creator A5074940166 @default.
- W4383041231 creator A5082158401 @default.
- W4383041231 creator A5083241250 @default.
- W4383041231 date "2023-07-04" @default.
- W4383041231 modified "2023-10-17" @default.
- W4383041231 title "Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning" @default.
- W4383041231 cites W1639707408 @default.
- W4383041231 cites W2028045978 @default.
- W4383041231 cites W2083651237 @default.
- W4383041231 cites W2085364760 @default.
- W4383041231 cites W2169232412 @default.
- W4383041231 cites W2189008129 @default.
- W4383041231 cites W2275500828 @default.
- W4383041231 cites W2735522416 @default.
- W4383041231 cites W2766353870 @default.
- W4383041231 cites W3004561498 @default.
- W4383041231 cites W3037198595 @default.
- W4383041231 cites W3103894271 @default.
- W4383041231 cites W4200411564 @default.
- W4383041231 cites W4251617330 @default.
- W4383041231 cites W4285244546 @default.
- W4383041231 doi "https://doi.org/10.1002/jmri.28868" @default.
- W4383041231 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37401726" @default.
- W4383041231 hasPublicationYear "2023" @default.
- W4383041231 type Work @default.
- W4383041231 citedByCount "0" @default.
- W4383041231 crossrefType "journal-article" @default.
- W4383041231 hasAuthorship W4383041231A5004294168 @default.
- W4383041231 hasAuthorship W4383041231A5004783101 @default.
- W4383041231 hasAuthorship W4383041231A5043650123 @default.
- W4383041231 hasAuthorship W4383041231A5046602530 @default.
- W4383041231 hasAuthorship W4383041231A5057372511 @default.
- W4383041231 hasAuthorship W4383041231A5074940166 @default.
- W4383041231 hasAuthorship W4383041231A5082158401 @default.
- W4383041231 hasAuthorship W4383041231A5083241250 @default.
- W4383041231 hasBestOaLocation W43830412312 @default.
- W4383041231 hasConcept C108583219 @default.
- W4383041231 hasConcept C121332964 @default.
- W4383041231 hasConcept C126838900 @default.
- W4383041231 hasConcept C143409427 @default.
- W4383041231 hasConcept C154945302 @default.
- W4383041231 hasConcept C32891209 @default.
- W4383041231 hasConcept C41008148 @default.
- W4383041231 hasConcept C46141821 @default.
- W4383041231 hasConcept C54170458 @default.
- W4383041231 hasConcept C62520636 @default.
- W4383041231 hasConcept C71924100 @default.
- W4383041231 hasConcept C81363708 @default.
- W4383041231 hasConceptScore W4383041231C108583219 @default.
- W4383041231 hasConceptScore W4383041231C121332964 @default.
- W4383041231 hasConceptScore W4383041231C126838900 @default.
- W4383041231 hasConceptScore W4383041231C143409427 @default.
- W4383041231 hasConceptScore W4383041231C154945302 @default.
- W4383041231 hasConceptScore W4383041231C32891209 @default.
- W4383041231 hasConceptScore W4383041231C41008148 @default.
- W4383041231 hasConceptScore W4383041231C46141821 @default.
- W4383041231 hasConceptScore W4383041231C54170458 @default.
- W4383041231 hasConceptScore W4383041231C62520636 @default.
- W4383041231 hasConceptScore W4383041231C71924100 @default.
- W4383041231 hasConceptScore W4383041231C81363708 @default.
- W4383041231 hasLocation W43830412311 @default.
- W4383041231 hasLocation W43830412312 @default.
- W4383041231 hasLocation W43830412313 @default.
- W4383041231 hasOpenAccess W4383041231 @default.
- W4383041231 hasPrimaryLocation W43830412311 @default.
- W4383041231 hasRelatedWork W2016533837 @default.
- W4383041231 hasRelatedWork W2892386716 @default.
- W4383041231 hasRelatedWork W3027020613 @default.
- W4383041231 hasRelatedWork W3029198973 @default.
- W4383041231 hasRelatedWork W3133861977 @default.
- W4383041231 hasRelatedWork W3167885074 @default.
- W4383041231 hasRelatedWork W3167935049 @default.
- W4383041231 hasRelatedWork W3193565141 @default.
- W4383041231 hasRelatedWork W4226493464 @default.
- W4383041231 hasRelatedWork W4312417841 @default.
- W4383041231 isParatext "false" @default.
- W4383041231 isRetracted "false" @default.
- W4383041231 workType "article" @default.