Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383041485> ?p ?o ?g. }
- W4383041485 endingPage "116188" @default.
- W4383041485 startingPage "116188" @default.
- W4383041485 abstract "We propose a novel Gaussian quadrature, referred to as the learned Gaussian quadrature, that is obtained by employing a supervised learning algorithm to find improved weights for the matrix integrations of 2D and 3D enriched solid finite elements. As the algorithm employs the intuitive relationship between a target matrix and improved Gaussian weights, it successfully finds the learned Gaussian quadrature only using a simple network. The learned Gaussian quadrature accurately calculates the matrix with fewer integration points than the standard Gaussian quadrature, thereby increasing the computational efficiency of the enriched finite elements. Using various numerical examples, the theoretical convergence behavior of the enriched solid finite elements with the learned Gaussian quadrature is first investigated, and then, the practical performances are measured." @default.
- W4383041485 created "2023-07-04" @default.
- W4383041485 creator A5014374386 @default.
- W4383041485 creator A5049835144 @default.
- W4383041485 creator A5080102979 @default.
- W4383041485 date "2023-09-01" @default.
- W4383041485 modified "2023-10-09" @default.
- W4383041485 title "Learned Gaussian quadrature for enriched solid finite elements" @default.
- W4383041485 cites W1643358221 @default.
- W4383041485 cites W1964757393 @default.
- W4383041485 cites W1966388799 @default.
- W4383041485 cites W1986201900 @default.
- W4383041485 cites W1990529449 @default.
- W4383041485 cites W1994706362 @default.
- W4383041485 cites W2002658616 @default.
- W4383041485 cites W2024127547 @default.
- W4383041485 cites W2039401182 @default.
- W4383041485 cites W2055932835 @default.
- W4383041485 cites W2067610445 @default.
- W4383041485 cites W2067925815 @default.
- W4383041485 cites W2073562870 @default.
- W4383041485 cites W2075771875 @default.
- W4383041485 cites W2077609524 @default.
- W4383041485 cites W2089142741 @default.
- W4383041485 cites W2095021443 @default.
- W4383041485 cites W2098258814 @default.
- W4383041485 cites W2110186881 @default.
- W4383041485 cites W2137232499 @default.
- W4383041485 cites W2142110040 @default.
- W4383041485 cites W2142596047 @default.
- W4383041485 cites W2162858583 @default.
- W4383041485 cites W2162914501 @default.
- W4383041485 cites W2164133324 @default.
- W4383041485 cites W2165834163 @default.
- W4383041485 cites W2167745263 @default.
- W4383041485 cites W2412750322 @default.
- W4383041485 cites W2753246113 @default.
- W4383041485 cites W2772316482 @default.
- W4383041485 cites W2792698881 @default.
- W4383041485 cites W2792957876 @default.
- W4383041485 cites W2797887977 @default.
- W4383041485 cites W2901474455 @default.
- W4383041485 cites W2903438726 @default.
- W4383041485 cites W2933214217 @default.
- W4383041485 cites W2939073074 @default.
- W4383041485 cites W2976415101 @default.
- W4383041485 cites W3000265657 @default.
- W4383041485 cites W3084276559 @default.
- W4383041485 cites W3093294574 @default.
- W4383041485 cites W3095933692 @default.
- W4383041485 cites W3112199937 @default.
- W4383041485 cites W3141300353 @default.
- W4383041485 cites W3166717908 @default.
- W4383041485 cites W3178590964 @default.
- W4383041485 cites W3195500848 @default.
- W4383041485 cites W3202131078 @default.
- W4383041485 cites W3209704659 @default.
- W4383041485 cites W4207065668 @default.
- W4383041485 cites W4211245755 @default.
- W4383041485 cites W4280571279 @default.
- W4383041485 cites W4288032629 @default.
- W4383041485 cites W4306855849 @default.
- W4383041485 doi "https://doi.org/10.1016/j.cma.2023.116188" @default.
- W4383041485 hasPublicationYear "2023" @default.
- W4383041485 type Work @default.
- W4383041485 citedByCount "0" @default.
- W4383041485 crossrefType "journal-article" @default.
- W4383041485 hasAuthorship W4383041485A5014374386 @default.
- W4383041485 hasAuthorship W4383041485A5049835144 @default.
- W4383041485 hasAuthorship W4383041485A5080102979 @default.
- W4383041485 hasBestOaLocation W43830414851 @default.
- W4383041485 hasConcept C11413529 @default.
- W4383041485 hasConcept C120665830 @default.
- W4383041485 hasConcept C121332964 @default.
- W4383041485 hasConcept C126255220 @default.
- W4383041485 hasConcept C127349201 @default.
- W4383041485 hasConcept C134306372 @default.
- W4383041485 hasConcept C14103991 @default.
- W4383041485 hasConcept C154945302 @default.
- W4383041485 hasConcept C162046254 @default.
- W4383041485 hasConcept C162324750 @default.
- W4383041485 hasConcept C163716315 @default.
- W4383041485 hasConcept C167196314 @default.
- W4383041485 hasConcept C167590341 @default.
- W4383041485 hasConcept C172657837 @default.
- W4383041485 hasConcept C184599523 @default.
- W4383041485 hasConcept C27016315 @default.
- W4383041485 hasConcept C2775924081 @default.
- W4383041485 hasConcept C2777303404 @default.
- W4383041485 hasConcept C28826006 @default.
- W4383041485 hasConcept C33923547 @default.
- W4383041485 hasConcept C41008148 @default.
- W4383041485 hasConcept C47446073 @default.
- W4383041485 hasConcept C48265008 @default.
- W4383041485 hasConcept C50522688 @default.
- W4383041485 hasConcept C62520636 @default.
- W4383041485 hasConcept C62869609 @default.
- W4383041485 hasConcept C6866599 @default.