Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383046871> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4383046871 abstract "Algebraic Combinatorics originated in Algebra and Representation Theory, studying their discrete objects and integral quantities via combinatorial methods which have since developed independent and self-contained lives and brought us some beautiful formulas and combinatorial interpretations. The flagship hook-length formula counts the number of Standard Young Tableaux, which also gives the dimension of the irreducible Specht modules of the Symmetric group. The elegant Littlewood-Richardson rule gives the multiplicities of irreducible GL-modules in the tensor products of GL-modules. Such formulas and rules have inspired large areas of study and development beyond Algebra and Combinatorics, becoming applicable to Integrable Probability and Statistical Mechanics, and Computational Complexity Theory. We will see what lies beyond the reach of such nice product formulas and combinatorial interpretations and enter the realm of Computational Complexity Theory, that could formally explain the beauty we see and the difficulties we encounter in finding further formulas and ``combinatorial interpretations''. A 85-year-old such problem asks for a positive combinatorial formula for the Kronecker coefficients of the Symmetric group, another one pertains to the plethysm coefficients of the General Linear group. In the opposite direction, the study of Kronecker and plethysm coefficients leads to the disproof of the wishful approach of Geometric Complexity Theory (GCT) towards the resolution of the algebraic P vs NP Millennium problem, the VP vs VNP problem. In order to make GCT work and establish computational complexity lower bounds, we need to understand representation theoretic multiplicities in further detail, possibly asymptotically." @default.
- W4383046871 created "2023-07-04" @default.
- W4383046871 creator A5049864711 @default.
- W4383046871 date "2023-06-30" @default.
- W4383046871 modified "2023-09-26" @default.
- W4383046871 title "Computational Complexity in Algebraic Combinatorics" @default.
- W4383046871 doi "https://doi.org/10.48550/arxiv.2306.17511" @default.
- W4383046871 hasPublicationYear "2023" @default.
- W4383046871 type Work @default.
- W4383046871 citedByCount "0" @default.
- W4383046871 crossrefType "posted-content" @default.
- W4383046871 hasAuthorship W4383046871A5049864711 @default.
- W4383046871 hasBestOaLocation W43830468711 @default.
- W4383046871 hasConcept C114614502 @default.
- W4383046871 hasConcept C115908005 @default.
- W4383046871 hasConcept C118539577 @default.
- W4383046871 hasConcept C121332964 @default.
- W4383046871 hasConcept C128622974 @default.
- W4383046871 hasConcept C134306372 @default.
- W4383046871 hasConcept C136119220 @default.
- W4383046871 hasConcept C165368118 @default.
- W4383046871 hasConcept C1769372 @default.
- W4383046871 hasConcept C17744445 @default.
- W4383046871 hasConcept C197273675 @default.
- W4383046871 hasConcept C199539241 @default.
- W4383046871 hasConcept C202444582 @default.
- W4383046871 hasConcept C2776359362 @default.
- W4383046871 hasConcept C33676613 @default.
- W4383046871 hasConcept C33923547 @default.
- W4383046871 hasConcept C3746008 @default.
- W4383046871 hasConcept C39482219 @default.
- W4383046871 hasConcept C51255310 @default.
- W4383046871 hasConcept C54506234 @default.
- W4383046871 hasConcept C54643580 @default.
- W4383046871 hasConcept C62520636 @default.
- W4383046871 hasConcept C9376300 @default.
- W4383046871 hasConcept C94625758 @default.
- W4383046871 hasConceptScore W4383046871C114614502 @default.
- W4383046871 hasConceptScore W4383046871C115908005 @default.
- W4383046871 hasConceptScore W4383046871C118539577 @default.
- W4383046871 hasConceptScore W4383046871C121332964 @default.
- W4383046871 hasConceptScore W4383046871C128622974 @default.
- W4383046871 hasConceptScore W4383046871C134306372 @default.
- W4383046871 hasConceptScore W4383046871C136119220 @default.
- W4383046871 hasConceptScore W4383046871C165368118 @default.
- W4383046871 hasConceptScore W4383046871C1769372 @default.
- W4383046871 hasConceptScore W4383046871C17744445 @default.
- W4383046871 hasConceptScore W4383046871C197273675 @default.
- W4383046871 hasConceptScore W4383046871C199539241 @default.
- W4383046871 hasConceptScore W4383046871C202444582 @default.
- W4383046871 hasConceptScore W4383046871C2776359362 @default.
- W4383046871 hasConceptScore W4383046871C33676613 @default.
- W4383046871 hasConceptScore W4383046871C33923547 @default.
- W4383046871 hasConceptScore W4383046871C3746008 @default.
- W4383046871 hasConceptScore W4383046871C39482219 @default.
- W4383046871 hasConceptScore W4383046871C51255310 @default.
- W4383046871 hasConceptScore W4383046871C54506234 @default.
- W4383046871 hasConceptScore W4383046871C54643580 @default.
- W4383046871 hasConceptScore W4383046871C62520636 @default.
- W4383046871 hasConceptScore W4383046871C9376300 @default.
- W4383046871 hasConceptScore W4383046871C94625758 @default.
- W4383046871 hasLocation W43830468711 @default.
- W4383046871 hasOpenAccess W4383046871 @default.
- W4383046871 hasPrimaryLocation W43830468711 @default.
- W4383046871 hasRelatedWork W1480086350 @default.
- W4383046871 hasRelatedWork W1614037013 @default.
- W4383046871 hasRelatedWork W1901947321 @default.
- W4383046871 hasRelatedWork W2112687189 @default.
- W4383046871 hasRelatedWork W2154894005 @default.
- W4383046871 hasRelatedWork W2282900067 @default.
- W4383046871 hasRelatedWork W2466298547 @default.
- W4383046871 hasRelatedWork W2901313923 @default.
- W4383046871 hasRelatedWork W2970082198 @default.
- W4383046871 hasRelatedWork W4301763206 @default.
- W4383046871 isParatext "false" @default.
- W4383046871 isRetracted "false" @default.
- W4383046871 workType "article" @default.