Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383058498> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4383058498 endingPage "5699" @default.
- W4383058498 startingPage "5692" @default.
- W4383058498 abstract "Chest computed tomography (CT) is increasingly being used to screen for lung cancer. Machine learning models could facilitate the distinction between benign and malignant pulmonary nodules. This study aimed to develop and validate a simple clinical prediction model to distinguish between benign and malignant lung nodules.Patients who underwent a video thoracic-assisted lobectomy between January 2013 and December 2020 at a Chinese hospital were enrolled in the study. The clinical characteristics of the patients were extracted from their medical records. Univariate and multivariate analyses were used to identify the risk factors for malignancy. A decision tree model with 10-fold cross-validation was constructed to predict the malignancy of the nodules. The sensitivity, specificity, and area under the curve (AUC) of a receiver operatic characteristics curve were used to evaluate the model's prediction accuracy in relation to the pathological gold standard.Out of the 1,199 patients with pulmonary nodules enrolled in the study, 890 were pathologically confirmed to have malignant lesions. The multivariate analysis identified satellite lesions as an independent predictor for benign pulmonary nodules. Conversely, the lobulated sign, burr sign, density, vascular convergence sign, and pleural indentation sign were identified as independent predictors for malignant pulmonary nodules. The decision tree analysis identified the density of the lesion, the burr sign, the vascular convergence sign, and the drinking history as predictors of malignancy. The area under the curve of the decision tree model was 0.746 (95% CI 0.705-0.778), while the sensitivity and specificity were 0.762 and 0.799, respectively.The decision tree model accurately characterized the pulmonary nodule and could be used to guide clinical decision-making." @default.
- W4383058498 created "2023-07-05" @default.
- W4383058498 creator A5012510849 @default.
- W4383058498 creator A5028526811 @default.
- W4383058498 creator A5047495643 @default.
- W4383058498 creator A5051447149 @default.
- W4383058498 creator A5055927309 @default.
- W4383058498 creator A5061843638 @default.
- W4383058498 date "2023-06-01" @default.
- W4383058498 modified "2023-09-24" @default.
- W4383058498 title "A decision tree model to distinguish between benign and malignant pulmonary nodules on CT scans." @default.
- W4383058498 doi "https://doi.org/10.26355/eurrev_202306_32809" @default.
- W4383058498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37401307" @default.
- W4383058498 hasPublicationYear "2023" @default.
- W4383058498 type Work @default.
- W4383058498 citedByCount "0" @default.
- W4383058498 crossrefType "journal-article" @default.
- W4383058498 hasAuthorship W4383058498A5012510849 @default.
- W4383058498 hasAuthorship W4383058498A5028526811 @default.
- W4383058498 hasAuthorship W4383058498A5047495643 @default.
- W4383058498 hasAuthorship W4383058498A5051447149 @default.
- W4383058498 hasAuthorship W4383058498A5055927309 @default.
- W4383058498 hasAuthorship W4383058498A5061843638 @default.
- W4383058498 hasConcept C126322002 @default.
- W4383058498 hasConcept C126838900 @default.
- W4383058498 hasConcept C144301174 @default.
- W4383058498 hasConcept C2776256026 @default.
- W4383058498 hasConcept C2779399171 @default.
- W4383058498 hasConcept C2780244788 @default.
- W4383058498 hasConcept C38180746 @default.
- W4383058498 hasConcept C544519230 @default.
- W4383058498 hasConcept C58471807 @default.
- W4383058498 hasConcept C71924100 @default.
- W4383058498 hasConceptScore W4383058498C126322002 @default.
- W4383058498 hasConceptScore W4383058498C126838900 @default.
- W4383058498 hasConceptScore W4383058498C144301174 @default.
- W4383058498 hasConceptScore W4383058498C2776256026 @default.
- W4383058498 hasConceptScore W4383058498C2779399171 @default.
- W4383058498 hasConceptScore W4383058498C2780244788 @default.
- W4383058498 hasConceptScore W4383058498C38180746 @default.
- W4383058498 hasConceptScore W4383058498C544519230 @default.
- W4383058498 hasConceptScore W4383058498C58471807 @default.
- W4383058498 hasConceptScore W4383058498C71924100 @default.
- W4383058498 hasIssue "12" @default.
- W4383058498 hasLocation W43830584981 @default.
- W4383058498 hasOpenAccess W4383058498 @default.
- W4383058498 hasPrimaryLocation W43830584981 @default.
- W4383058498 hasRelatedWork W2022132038 @default.
- W4383058498 hasRelatedWork W2034204715 @default.
- W4383058498 hasRelatedWork W2071412554 @default.
- W4383058498 hasRelatedWork W2165854341 @default.
- W4383058498 hasRelatedWork W2278533172 @default.
- W4383058498 hasRelatedWork W2284136450 @default.
- W4383058498 hasRelatedWork W2902148150 @default.
- W4383058498 hasRelatedWork W4319592828 @default.
- W4383058498 hasRelatedWork W54659473 @default.
- W4383058498 hasRelatedWork W2481187507 @default.
- W4383058498 hasVolume "27" @default.
- W4383058498 isParatext "false" @default.
- W4383058498 isRetracted "false" @default.
- W4383058498 workType "article" @default.