Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383065583> ?p ?o ?g. }
- W4383065583 endingPage "16" @default.
- W4383065583 startingPage "1" @default.
- W4383065583 abstract "Image denoising is a crucial algorithm in image processing that aims to enhance image quality. Deep learning-based image denoising methods can be categorized into supervised and unsupervised approaches. Supervised learning requires pairs of noisy and noise-free training data, which is impractical in real-world scenarios. Unsupervised learning uses pairs of noisy images for training, but it may yield lower accuracy. Additionally, deep learning-based methods often require a large amount of training data. To overcome these challenges, this research proposes a self-validation Noise2Noise (SV-N2N) framework that generates validation sets using only noisy images without requiring noise-free pairs. The proposed SV-N2N method effectively reduces noise, comparable to supervised and unsupervised methods, without requiring a noise-free ground truth, which is efficient for solving real-world scenarios." @default.
- W4383065583 created "2023-07-05" @default.
- W4383065583 creator A5016631922 @default.
- W4383065583 creator A5053154570 @default.
- W4383065583 creator A5092392897 @default.
- W4383065583 date "2023-07-04" @default.
- W4383065583 modified "2023-09-25" @default.
- W4383065583 title "A self-validation Noise2Noise training framework for image denoising" @default.
- W4383065583 cites W1791560514 @default.
- W4383065583 cites W1901129140 @default.
- W4383065583 cites W1922032877 @default.
- W4383065583 cites W1930824406 @default.
- W4383065583 cites W1974437188 @default.
- W4383065583 cites W19771135 @default.
- W4383065583 cites W1981130078 @default.
- W4383065583 cites W2004081421 @default.
- W4383065583 cites W2005876512 @default.
- W4383065583 cites W2042970394 @default.
- W4383065583 cites W2085692415 @default.
- W4383065583 cites W2194775991 @default.
- W4383065583 cites W2328637565 @default.
- W4383065583 cites W2508457857 @default.
- W4383065583 cites W2562637781 @default.
- W4383065583 cites W2613296094 @default.
- W4383065583 cites W2789876780 @default.
- W4383065583 cites W2799192307 @default.
- W4383065583 cites W2807436399 @default.
- W4383065583 cites W2807567209 @default.
- W4383065583 cites W2902857081 @default.
- W4383065583 cites W2944123939 @default.
- W4383065583 cites W2946229075 @default.
- W4383065583 cites W2954996726 @default.
- W4383065583 cites W2958439762 @default.
- W4383065583 cites W2963686971 @default.
- W4383065583 cites W2963725279 @default.
- W4383065583 cites W2967709485 @default.
- W4383065583 cites W2971304217 @default.
- W4383065583 cites W2971719842 @default.
- W4383065583 cites W2986057551 @default.
- W4383065583 cites W2995942064 @default.
- W4383065583 cites W3009016150 @default.
- W4383065583 cites W3010678772 @default.
- W4383065583 cites W3011455439 @default.
- W4383065583 cites W3015520332 @default.
- W4383065583 cites W3017331661 @default.
- W4383065583 cites W3033494729 @default.
- W4383065583 cites W3035542568 @default.
- W4383065583 cites W3043944826 @default.
- W4383065583 cites W3044607848 @default.
- W4383065583 cites W3047011367 @default.
- W4383065583 cites W3087110941 @default.
- W4383065583 cites W3090412929 @default.
- W4383065583 cites W3110028641 @default.
- W4383065583 cites W3113807972 @default.
- W4383065583 cites W3139509168 @default.
- W4383065583 cites W3140854437 @default.
- W4383065583 cites W3159354382 @default.
- W4383065583 cites W3169893408 @default.
- W4383065583 cites W3174829522 @default.
- W4383065583 cites W3176350911 @default.
- W4383065583 cites W3185748252 @default.
- W4383065583 cites W3194335755 @default.
- W4383065583 cites W3194730353 @default.
- W4383065583 cites W3203913839 @default.
- W4383065583 cites W3204059660 @default.
- W4383065583 cites W3212800953 @default.
- W4383065583 cites W3215900571 @default.
- W4383065583 cites W4214874646 @default.
- W4383065583 cites W4241191626 @default.
- W4383065583 cites W4283021596 @default.
- W4383065583 cites W4296551003 @default.
- W4383065583 doi "https://doi.org/10.1080/13682199.2023.2229040" @default.
- W4383065583 hasPublicationYear "2023" @default.
- W4383065583 type Work @default.
- W4383065583 citedByCount "0" @default.
- W4383065583 crossrefType "journal-article" @default.
- W4383065583 hasAuthorship W4383065583A5016631922 @default.
- W4383065583 hasAuthorship W4383065583A5053154570 @default.
- W4383065583 hasAuthorship W4383065583A5092392897 @default.
- W4383065583 hasConcept C108583219 @default.
- W4383065583 hasConcept C115961682 @default.
- W4383065583 hasConcept C119857082 @default.
- W4383065583 hasConcept C121332964 @default.
- W4383065583 hasConcept C136389625 @default.
- W4383065583 hasConcept C146849305 @default.
- W4383065583 hasConcept C153180895 @default.
- W4383065583 hasConcept C153294291 @default.
- W4383065583 hasConcept C154945302 @default.
- W4383065583 hasConcept C163294075 @default.
- W4383065583 hasConcept C2777211547 @default.
- W4383065583 hasConcept C31972630 @default.
- W4383065583 hasConcept C41008148 @default.
- W4383065583 hasConcept C50644808 @default.
- W4383065583 hasConcept C55020928 @default.
- W4383065583 hasConcept C8038995 @default.
- W4383065583 hasConcept C99498987 @default.
- W4383065583 hasConceptScore W4383065583C108583219 @default.
- W4383065583 hasConceptScore W4383065583C115961682 @default.