Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383066962> ?p ?o ?g. }
- W4383066962 endingPage "171250" @default.
- W4383066962 startingPage "171250" @default.
- W4383066962 abstract "Various features can benefit the sintered NdFeB material modeling process, as they provide more dimensional information related to the target and make the model more accurate. In this work, by introducing composition and process features as input, we successfully built a sintered NdFeB performance prediction model by comparing different machine learning models with good generalization capability, high accuracy, and sound interpretation compared to previously published work. In addition, using the Shapley additive interpretation (SHAP) method, the unexplainable problem of ML models is solved by evaluating the contribution of the features in the regression model to the results. The intuitive SHAP value plots showed the complex relationship between input variables and magnet performance. Finally, we used the above machine learning model to complete the process framework for evaluating the performance of sintered NdFeB materials. Our work is expected to accelerate performance screening and material development of sintered NdFeB." @default.
- W4383066962 created "2023-07-05" @default.
- W4383066962 creator A5000432967 @default.
- W4383066962 creator A5006964432 @default.
- W4383066962 creator A5046362363 @default.
- W4383066962 creator A5053780153 @default.
- W4383066962 creator A5054984630 @default.
- W4383066962 creator A5062623489 @default.
- W4383066962 creator A5064381644 @default.
- W4383066962 creator A5065322400 @default.
- W4383066962 date "2023-11-01" @default.
- W4383066962 modified "2023-10-15" @default.
- W4383066962 title "Performance prediction models for sintered NdFeB using machine learning methods and interpretable studies" @default.
- W4383066962 cites W1929451192 @default.
- W4383066962 cites W1993770615 @default.
- W4383066962 cites W1995273214 @default.
- W4383066962 cites W1995752689 @default.
- W4383066962 cites W2021843045 @default.
- W4383066962 cites W2026572419 @default.
- W4383066962 cites W2031258238 @default.
- W4383066962 cites W2035207116 @default.
- W4383066962 cites W2043121425 @default.
- W4383066962 cites W2047604247 @default.
- W4383066962 cites W2055891448 @default.
- W4383066962 cites W2061927343 @default.
- W4383066962 cites W2067915273 @default.
- W4383066962 cites W2074326984 @default.
- W4383066962 cites W2074867847 @default.
- W4383066962 cites W2076238271 @default.
- W4383066962 cites W2079733655 @default.
- W4383066962 cites W2083781420 @default.
- W4383066962 cites W2086390173 @default.
- W4383066962 cites W2087511025 @default.
- W4383066962 cites W2093111066 @default.
- W4383066962 cites W2133219599 @default.
- W4383066962 cites W2138224603 @default.
- W4383066962 cites W2192203593 @default.
- W4383066962 cites W2254047851 @default.
- W4383066962 cites W2317421610 @default.
- W4383066962 cites W2774966556 @default.
- W4383066962 cites W2946813522 @default.
- W4383066962 cites W2963061076 @default.
- W4383066962 cites W3133128629 @default.
- W4383066962 cites W3139315923 @default.
- W4383066962 cites W3197207674 @default.
- W4383066962 cites W3208084925 @default.
- W4383066962 cites W4211039245 @default.
- W4383066962 cites W4220990342 @default.
- W4383066962 doi "https://doi.org/10.1016/j.jallcom.2023.171250" @default.
- W4383066962 hasPublicationYear "2023" @default.
- W4383066962 type Work @default.
- W4383066962 citedByCount "1" @default.
- W4383066962 crossrefType "journal-article" @default.
- W4383066962 hasAuthorship W4383066962A5000432967 @default.
- W4383066962 hasAuthorship W4383066962A5006964432 @default.
- W4383066962 hasAuthorship W4383066962A5046362363 @default.
- W4383066962 hasAuthorship W4383066962A5053780153 @default.
- W4383066962 hasAuthorship W4383066962A5054984630 @default.
- W4383066962 hasAuthorship W4383066962A5062623489 @default.
- W4383066962 hasAuthorship W4383066962A5064381644 @default.
- W4383066962 hasAuthorship W4383066962A5065322400 @default.
- W4383066962 hasConcept C110135171 @default.
- W4383066962 hasConcept C111919701 @default.
- W4383066962 hasConcept C119857082 @default.
- W4383066962 hasConcept C127413603 @default.
- W4383066962 hasConcept C134306372 @default.
- W4383066962 hasConcept C154945302 @default.
- W4383066962 hasConcept C16389437 @default.
- W4383066962 hasConcept C177148314 @default.
- W4383066962 hasConcept C18762648 @default.
- W4383066962 hasConcept C192562407 @default.
- W4383066962 hasConcept C199360897 @default.
- W4383066962 hasConcept C33923547 @default.
- W4383066962 hasConcept C41008148 @default.
- W4383066962 hasConcept C527412718 @default.
- W4383066962 hasConcept C78519656 @default.
- W4383066962 hasConcept C98045186 @default.
- W4383066962 hasConceptScore W4383066962C110135171 @default.
- W4383066962 hasConceptScore W4383066962C111919701 @default.
- W4383066962 hasConceptScore W4383066962C119857082 @default.
- W4383066962 hasConceptScore W4383066962C127413603 @default.
- W4383066962 hasConceptScore W4383066962C134306372 @default.
- W4383066962 hasConceptScore W4383066962C154945302 @default.
- W4383066962 hasConceptScore W4383066962C16389437 @default.
- W4383066962 hasConceptScore W4383066962C177148314 @default.
- W4383066962 hasConceptScore W4383066962C18762648 @default.
- W4383066962 hasConceptScore W4383066962C192562407 @default.
- W4383066962 hasConceptScore W4383066962C199360897 @default.
- W4383066962 hasConceptScore W4383066962C33923547 @default.
- W4383066962 hasConceptScore W4383066962C41008148 @default.
- W4383066962 hasConceptScore W4383066962C527412718 @default.
- W4383066962 hasConceptScore W4383066962C78519656 @default.
- W4383066962 hasConceptScore W4383066962C98045186 @default.
- W4383066962 hasLocation W43830669621 @default.
- W4383066962 hasOpenAccess W4383066962 @default.
- W4383066962 hasPrimaryLocation W43830669621 @default.
- W4383066962 hasRelatedWork W2035875499 @default.
- W4383066962 hasRelatedWork W2046683081 @default.