Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383067462> ?p ?o ?g. }
- W4383067462 abstract "Cellulose nanofibers (CNFs) are the newly introduced plant-based materials in the construction industry to ensure sustainable development. The use of artificial intelligence (AI) techniques especially machine learning (ML) models has assisted to economized civil engineering. This research aims to determine the compressive strength of cellulose nanofibers reinforced concrete by using supervised regression machine learning techniques for analysis before adopting to utilize. To achieve this task, the machine learning models: Random Forest (RF), Linear Regression (LR), Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), Ada Boosting Regressor (ABR), K-Neighbor Regressor (KNN), Bagging Regressor (BR), XG Boost Regressor (XGBR), Decision Tree (DT), and Pruned Decision Tree (PDT) were implemented. An experimental-based dataset containing 695 data points was prepared and split into two categories (Training dataset = 70%, Testing dataset = 30%) for the evolution of ML models. There were seven independent variables: cement (kg/m3), water (kg/m3), CNFs (kg/m3), superplasticizer (kg/m3), fine aggregate (kg/m3), coarse aggregate (kg/m3), and age (Day) variables as an input and one dependent variable: compressive strength fc of CNFs reinforced concrete (MPa) as an output. The following metrics were employed to gauge the ability of the model: R2, MAPE, MAE, MSE, and RMSE. The findings specified that seven out of ten models (RF, BR, XGBR, DT, GBR, ABR, and KNN) to predict the compressive strength of CNFs concrete had a firm capability (R2 >0.72, MAPE ≤ 0.1, and MAE ≤ 5) confirming to the standard of R2 value greater than 0.60 and metrics values very less, close to one. According to the sensitivity analysis of Random Forest model, water and cement were the factors with the biggest effects on the prediction of CNFs reinforced concrete, while the smallest effecting variable was coarse aggregate. It was concluded that the RF, BR, and DT were the premier predicting models." @default.
- W4383067462 created "2023-07-05" @default.
- W4383067462 creator A5007677985 @default.
- W4383067462 creator A5019814115 @default.
- W4383067462 creator A5021269380 @default.
- W4383067462 creator A5030537727 @default.
- W4383067462 creator A5047289005 @default.
- W4383067462 creator A5071544141 @default.
- W4383067462 creator A5075937517 @default.
- W4383067462 creator A5078827133 @default.
- W4383067462 creator A5079537341 @default.
- W4383067462 creator A5086639323 @default.
- W4383067462 date "2023-07-04" @default.
- W4383067462 modified "2023-09-30" @default.
- W4383067462 title "Predicting the compressive strength of cellulose nanofibers reinforced concrete using regression machine learning models" @default.
- W4383067462 cites W1603964858 @default.
- W4383067462 cites W1685547248 @default.
- W4383067462 cites W1828732818 @default.
- W4383067462 cites W1884629683 @default.
- W4383067462 cites W1998808999 @default.
- W4383067462 cites W2000282519 @default.
- W4383067462 cites W2009774183 @default.
- W4383067462 cites W2020030047 @default.
- W4383067462 cites W2032962877 @default.
- W4383067462 cites W2052425692 @default.
- W4383067462 cites W2076669121 @default.
- W4383067462 cites W2109520483 @default.
- W4383067462 cites W2161597538 @default.
- W4383067462 cites W2277348389 @default.
- W4383067462 cites W2287122121 @default.
- W4383067462 cites W2469564349 @default.
- W4383067462 cites W2509168001 @default.
- W4383067462 cites W2529330140 @default.
- W4383067462 cites W2567083946 @default.
- W4383067462 cites W2581863177 @default.
- W4383067462 cites W2586722395 @default.
- W4383067462 cites W2769004134 @default.
- W4383067462 cites W2771936440 @default.
- W4383067462 cites W2802393564 @default.
- W4383067462 cites W2891492993 @default.
- W4383067462 cites W2894442399 @default.
- W4383067462 cites W2910799271 @default.
- W4383067462 cites W2911941147 @default.
- W4383067462 cites W2916531354 @default.
- W4383067462 cites W2920034092 @default.
- W4383067462 cites W2922207143 @default.
- W4383067462 cites W2922650194 @default.
- W4383067462 cites W2925230921 @default.
- W4383067462 cites W2946403564 @default.
- W4383067462 cites W2954099620 @default.
- W4383067462 cites W2955580870 @default.
- W4383067462 cites W2969642948 @default.
- W4383067462 cites W2971267235 @default.
- W4383067462 cites W2976353133 @default.
- W4383067462 cites W2988991829 @default.
- W4383067462 cites W2997735039 @default.
- W4383067462 cites W3016690807 @default.
- W4383067462 cites W3045575733 @default.
- W4383067462 cites W3080952128 @default.
- W4383067462 cites W3088621050 @default.
- W4383067462 cites W3091789811 @default.
- W4383067462 cites W3095219422 @default.
- W4383067462 cites W3098333058 @default.
- W4383067462 cites W3119262446 @default.
- W4383067462 cites W3126997349 @default.
- W4383067462 cites W3135629205 @default.
- W4383067462 cites W3138432961 @default.
- W4383067462 cites W3149531395 @default.
- W4383067462 cites W3153105019 @default.
- W4383067462 cites W3185008998 @default.
- W4383067462 cites W3208755466 @default.
- W4383067462 cites W3213391523 @default.
- W4383067462 cites W4200036493 @default.
- W4383067462 cites W4212929279 @default.
- W4383067462 cites W4223610088 @default.
- W4383067462 cites W4226544640 @default.
- W4383067462 cites W4281624909 @default.
- W4383067462 doi "https://doi.org/10.1080/23311916.2023.2225278" @default.
- W4383067462 hasPublicationYear "2023" @default.
- W4383067462 type Work @default.
- W4383067462 citedByCount "0" @default.
- W4383067462 crossrefType "journal-article" @default.
- W4383067462 hasAuthorship W4383067462A5007677985 @default.
- W4383067462 hasAuthorship W4383067462A5019814115 @default.
- W4383067462 hasAuthorship W4383067462A5021269380 @default.
- W4383067462 hasAuthorship W4383067462A5030537727 @default.
- W4383067462 hasAuthorship W4383067462A5047289005 @default.
- W4383067462 hasAuthorship W4383067462A5071544141 @default.
- W4383067462 hasAuthorship W4383067462A5075937517 @default.
- W4383067462 hasAuthorship W4383067462A5078827133 @default.
- W4383067462 hasAuthorship W4383067462A5079537341 @default.
- W4383067462 hasAuthorship W4383067462A5086639323 @default.
- W4383067462 hasBestOaLocation W43830674621 @default.
- W4383067462 hasConcept C105795698 @default.
- W4383067462 hasConcept C119857082 @default.
- W4383067462 hasConcept C12267149 @default.
- W4383067462 hasConcept C154945302 @default.
- W4383067462 hasConcept C159985019 @default.
- W4383067462 hasConcept C169258074 @default.
- W4383067462 hasConcept C192562407 @default.