Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383067504> ?p ?o ?g. }
- W4383067504 abstract "Abstract In a changing business environment, firms encounter significant challenges to fulfill sustainable development goals. However, firms can make substantial progress by adopting regenerative approaches grounded in circular economy principles, enabling them to effectively pursue sustainable development objectives such as responsible production and consumption (goal 12), climate action (goal 13), and the preservation of life on land (goal 15). However, there is a scarcity of research studies that offer guidance to top supply chain (SC) executives, aiming to enhance their environmental focus and enhance the SC viability through regenerative SC practices. This study employed the philosophical perspective of the natural resource‐based view. Advancing the SC literature, it tested a theoretical model to investigate the relationship between the political skills and SC analytics skills of top SC executives and the environmental orientation of SCs. Additionally, it examined the direct and indirect (via regenerative SC) relationships between a firm's environmental orientation and SC viability. This study also tested the moderating role of a firm's artificial intelligence‐driven big data analytics culture in these relationships. Applying a mixed‐methods approach, the study derived a theoretical model to link the aforementioned constructs. Apart from a qualitative investigation, data were also collected through a questionnaire‐based survey from 375 samples. The results indicated that the relationship between the political skills and SC analytics skills of top SC executives toward the environmental orientation of SCs is significant. Furthermore, they indicated that a firm's environmental orientation is positively related to a regenerative SC, which in turn enhances SC viability. The findings also provided evidence that a firm's AI‐driven big data analytics culture enhances the strength of these relationships. The current study extends the knowledge base by integrating the two unique concepts of digitalization and circular economy." @default.
- W4383067504 created "2023-07-05" @default.
- W4383067504 creator A5042908621 @default.
- W4383067504 creator A5045841946 @default.
- W4383067504 date "2023-07-04" @default.
- W4383067504 modified "2023-10-17" @default.
- W4383067504 title "Navigating circular economy: Unleashing the potential of political and supply chain analytics skills among top supply chain executives for environmental orientation, regenerative supply chain practices, and supply chain viability" @default.
- W4383067504 cites W136602053 @default.
- W4383067504 cites W1426145230 @default.
- W4383067504 cites W1963626504 @default.
- W4383067504 cites W1968553354 @default.
- W4383067504 cites W1972499992 @default.
- W4383067504 cites W1979422830 @default.
- W4383067504 cites W1991380847 @default.
- W4383067504 cites W1992842034 @default.
- W4383067504 cites W2001094309 @default.
- W4383067504 cites W2010989845 @default.
- W4383067504 cites W2033814643 @default.
- W4383067504 cites W2034134028 @default.
- W4383067504 cites W2039424384 @default.
- W4383067504 cites W2044652298 @default.
- W4383067504 cites W2053991485 @default.
- W4383067504 cites W2062916788 @default.
- W4383067504 cites W2071666535 @default.
- W4383067504 cites W2087442202 @default.
- W4383067504 cites W2106096361 @default.
- W4383067504 cites W2134884007 @default.
- W4383067504 cites W2138384227 @default.
- W4383067504 cites W2166886466 @default.
- W4383067504 cites W2339446221 @default.
- W4383067504 cites W2467386812 @default.
- W4383067504 cites W2505786633 @default.
- W4383067504 cites W2514772202 @default.
- W4383067504 cites W2519855942 @default.
- W4383067504 cites W2523783393 @default.
- W4383067504 cites W2586274245 @default.
- W4383067504 cites W2735550156 @default.
- W4383067504 cites W2767251818 @default.
- W4383067504 cites W2808783403 @default.
- W4383067504 cites W2894138194 @default.
- W4383067504 cites W2915282285 @default.
- W4383067504 cites W2917904071 @default.
- W4383067504 cites W2920556248 @default.
- W4383067504 cites W2943859804 @default.
- W4383067504 cites W2994754648 @default.
- W4383067504 cites W2998167908 @default.
- W4383067504 cites W2998574317 @default.
- W4383067504 cites W3012492594 @default.
- W4383067504 cites W3013474995 @default.
- W4383067504 cites W3026347338 @default.
- W4383067504 cites W3032628389 @default.
- W4383067504 cites W3044129127 @default.
- W4383067504 cites W3097839885 @default.
- W4383067504 cites W3112342812 @default.
- W4383067504 cites W3113846361 @default.
- W4383067504 cites W3118651707 @default.
- W4383067504 cites W3134061947 @default.
- W4383067504 cites W3135852794 @default.
- W4383067504 cites W3148729808 @default.
- W4383067504 cites W3155910169 @default.
- W4383067504 cites W3172668611 @default.
- W4383067504 cites W3187070205 @default.
- W4383067504 cites W3202782733 @default.
- W4383067504 cites W3207499280 @default.
- W4383067504 cites W4210532073 @default.
- W4383067504 cites W4212764476 @default.
- W4383067504 cites W4213318625 @default.
- W4383067504 cites W4214843027 @default.
- W4383067504 cites W4221061614 @default.
- W4383067504 cites W4224209871 @default.
- W4383067504 cites W4231077521 @default.
- W4383067504 cites W4235678817 @default.
- W4383067504 cites W4247314084 @default.
- W4383067504 cites W4282839837 @default.
- W4383067504 cites W4293382414 @default.
- W4383067504 cites W4295792399 @default.
- W4383067504 cites W4310012113 @default.
- W4383067504 cites W4311273752 @default.
- W4383067504 cites W4311692530 @default.
- W4383067504 cites W4313452358 @default.
- W4383067504 cites W4313524306 @default.
- W4383067504 cites W4313596519 @default.
- W4383067504 cites W4318540792 @default.
- W4383067504 cites W4318833090 @default.
- W4383067504 cites W4320491326 @default.
- W4383067504 cites W4327814408 @default.
- W4383067504 cites W4363675446 @default.
- W4383067504 cites W4367555263 @default.
- W4383067504 cites W4379967364 @default.
- W4383067504 cites W630723515 @default.
- W4383067504 doi "https://doi.org/10.1002/bse.3507" @default.
- W4383067504 hasPublicationYear "2023" @default.
- W4383067504 type Work @default.
- W4383067504 citedByCount "0" @default.
- W4383067504 crossrefType "journal-article" @default.
- W4383067504 hasAuthorship W4383067504A5042908621 @default.
- W4383067504 hasAuthorship W4383067504A5045841946 @default.
- W4383067504 hasConcept C108713360 @default.
- W4383067504 hasConcept C109747225 @default.
- W4383067504 hasConcept C144133560 @default.