Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383070036> ?p ?o ?g. }
- W4383070036 abstract "Rot in commercial timber reduces the value of the wood substantially and estimating the occurrence, severity, and volume of heartwood rot would be a useful tool in decision-making to minimize economic losses. Remotely sensed data has recently been used for mapping rot on a single-tree level, and although the results have been relatively poor, some potential has been shown. This study applied area-based approaches to predict rot occurrence, rot severity, and rot volume , at an area level. Ground reference data were collected from harvester operations in 2019–2021. Predictor variables were calculated from multi-temporal remotely sensed data together with environmental variables. Response variables from the harvester data and predictor variables from remotely sensed data were aggregated to grid cells and to forest stands. Random Forest models were built for the different combinations of response variables and predictor subsets, and validated with both random- and spatial cross-validation. The results showed that it was not possible to estimate rot occurrence and rot severity with the applied modeling procedure (pR2: 0.00–0.16), without spatially close training data. The better performance of rot volume models (pR2: 0.12–0.37) was mainly due to the correlation between timber volume and rot volume." @default.
- W4383070036 created "2023-07-05" @default.
- W4383070036 creator A5009621769 @default.
- W4383070036 creator A5038989511 @default.
- W4383070036 creator A5055675691 @default.
- W4383070036 creator A5073215366 @default.
- W4383070036 creator A5074132804 @default.
- W4383070036 creator A5076936224 @default.
- W4383070036 date "2023-07-04" @default.
- W4383070036 modified "2023-09-26" @default.
- W4383070036 title "Estimation of the occurrence, severity, and volume of heartwood rot using airborne laser scanning and optical satellite data" @default.
- W4383070036 cites W1964217023 @default.
- W4383070036 cites W1966562104 @default.
- W4383070036 cites W1973523498 @default.
- W4383070036 cites W1978617972 @default.
- W4383070036 cites W1982143107 @default.
- W4383070036 cites W2000102737 @default.
- W4383070036 cites W2000613913 @default.
- W4383070036 cites W2004941718 @default.
- W4383070036 cites W2005270253 @default.
- W4383070036 cites W2017409815 @default.
- W4383070036 cites W2028460800 @default.
- W4383070036 cites W2032108651 @default.
- W4383070036 cites W2033510127 @default.
- W4383070036 cites W2033884780 @default.
- W4383070036 cites W2039604550 @default.
- W4383070036 cites W2077509829 @default.
- W4383070036 cites W2077707413 @default.
- W4383070036 cites W2087463450 @default.
- W4383070036 cites W2094420085 @default.
- W4383070036 cites W2101678239 @default.
- W4383070036 cites W2107054191 @default.
- W4383070036 cites W2107374665 @default.
- W4383070036 cites W2128438912 @default.
- W4383070036 cites W2136256197 @default.
- W4383070036 cites W2149813070 @default.
- W4383070036 cites W2155714399 @default.
- W4383070036 cites W2216946510 @default.
- W4383070036 cites W2560901046 @default.
- W4383070036 cites W2602986670 @default.
- W4383070036 cites W2609566451 @default.
- W4383070036 cites W2618708155 @default.
- W4383070036 cites W2619078875 @default.
- W4383070036 cites W2772523133 @default.
- W4383070036 cites W2773188111 @default.
- W4383070036 cites W2804977742 @default.
- W4383070036 cites W2809116858 @default.
- W4383070036 cites W2810877939 @default.
- W4383070036 cites W2888218114 @default.
- W4383070036 cites W2911964244 @default.
- W4383070036 cites W2913535370 @default.
- W4383070036 cites W2965509734 @default.
- W4383070036 cites W2972629016 @default.
- W4383070036 cites W3102027041 @default.
- W4383070036 cites W3123838756 @default.
- W4383070036 cites W3130461578 @default.
- W4383070036 cites W3142224321 @default.
- W4383070036 cites W3154671245 @default.
- W4383070036 cites W3159301411 @default.
- W4383070036 cites W3206706034 @default.
- W4383070036 cites W3214950662 @default.
- W4383070036 cites W4205542274 @default.
- W4383070036 cites W4206359437 @default.
- W4383070036 cites W4213343432 @default.
- W4383070036 cites W4224229618 @default.
- W4383070036 cites W4225164804 @default.
- W4383070036 cites W4290755865 @default.
- W4383070036 doi "https://doi.org/10.1080/22797254.2023.2229501" @default.
- W4383070036 hasPublicationYear "2023" @default.
- W4383070036 type Work @default.
- W4383070036 citedByCount "0" @default.
- W4383070036 crossrefType "journal-article" @default.
- W4383070036 hasAuthorship W4383070036A5009621769 @default.
- W4383070036 hasAuthorship W4383070036A5038989511 @default.
- W4383070036 hasAuthorship W4383070036A5055675691 @default.
- W4383070036 hasAuthorship W4383070036A5073215366 @default.
- W4383070036 hasAuthorship W4383070036A5074132804 @default.
- W4383070036 hasAuthorship W4383070036A5076936224 @default.
- W4383070036 hasBestOaLocation W43830700361 @default.
- W4383070036 hasConcept C105795698 @default.
- W4383070036 hasConcept C121332964 @default.
- W4383070036 hasConcept C127413603 @default.
- W4383070036 hasConcept C146978453 @default.
- W4383070036 hasConcept C154945302 @default.
- W4383070036 hasConcept C169258074 @default.
- W4383070036 hasConcept C19269812 @default.
- W4383070036 hasConcept C201995342 @default.
- W4383070036 hasConcept C20556612 @default.
- W4383070036 hasConcept C205649164 @default.
- W4383070036 hasConcept C33923547 @default.
- W4383070036 hasConcept C39432304 @default.
- W4383070036 hasConcept C41008148 @default.
- W4383070036 hasConcept C62520636 @default.
- W4383070036 hasConcept C62649853 @default.
- W4383070036 hasConcept C96250715 @default.
- W4383070036 hasConceptScore W4383070036C105795698 @default.
- W4383070036 hasConceptScore W4383070036C121332964 @default.
- W4383070036 hasConceptScore W4383070036C127413603 @default.
- W4383070036 hasConceptScore W4383070036C146978453 @default.
- W4383070036 hasConceptScore W4383070036C154945302 @default.