Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383103472> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4383103472 endingPage "264" @default.
- W4383103472 startingPage "251" @default.
- W4383103472 abstract "Sentiment analysis (SA) has become an essential component of natural language processing (NLP) with numerous practical applications to understanding “what other people think”. Various techniques have been developed to tackle SA using deep learning (DL); however, current research lacks comprehensive strategies incorporating multiple-word embeddings. This study proposes a self-attention mechanism that leverages DL and involves the contextual integration of word embedding with a time-dispersed bidirectional gated recurrent unit (Bi-GRU). This work employs word embedding approaches GloVe, word2vec, and fastText to achieve better predictive capabilities. By integrating these techniques, the study aims to improve the classifier’s capability to precisely analyze and categorize sentiments in textual data from the domain of movies. The investigation seeks to enhance the classifier’s performance in NLP tasks by addressing the challenges of underfitting and overfitting in DL. To evaluate the model’s effectiveness, an openly available IMDb dataset was utilized, achieving a remarkable testing accuracy of 99.70%." @default.
- W4383103472 created "2023-07-05" @default.
- W4383103472 creator A5059680927 @default.
- W4383103472 creator A5084030665 @default.
- W4383103472 date "2023-07-04" @default.
- W4383103472 modified "2023-10-01" @default.
- W4383103472 title "A Bi-Directional GRU Architecture for the Self-Attention Mechanism: An Adaptable, Multi-Layered Approach with Blend of Word Embedding" @default.
- W4383103472 cites W2901737885 @default.
- W4383103472 cites W2914767245 @default.
- W4383103472 cites W2932079797 @default.
- W4383103472 cites W2963477629 @default.
- W4383103472 cites W2969545244 @default.
- W4383103472 cites W2972615427 @default.
- W4383103472 cites W2998009309 @default.
- W4383103472 cites W3002917088 @default.
- W4383103472 cites W3004047707 @default.
- W4383103472 cites W3042762729 @default.
- W4383103472 cites W3096865095 @default.
- W4383103472 cites W3127869043 @default.
- W4383103472 cites W3132982245 @default.
- W4383103472 cites W3162226099 @default.
- W4383103472 cites W3162960471 @default.
- W4383103472 cites W3167309908 @default.
- W4383103472 cites W3190268244 @default.
- W4383103472 cites W3195994896 @default.
- W4383103472 cites W3210070512 @default.
- W4383103472 cites W3217696222 @default.
- W4383103472 cites W4213125722 @default.
- W4383103472 cites W4220970138 @default.
- W4383103472 cites W4223592197 @default.
- W4383103472 cites W4280644435 @default.
- W4383103472 cites W4322628805 @default.
- W4383103472 doi "https://doi.org/10.46604/ijeti.2023.11510" @default.
- W4383103472 hasPublicationYear "2023" @default.
- W4383103472 type Work @default.
- W4383103472 citedByCount "0" @default.
- W4383103472 crossrefType "journal-article" @default.
- W4383103472 hasAuthorship W4383103472A5059680927 @default.
- W4383103472 hasAuthorship W4383103472A5084030665 @default.
- W4383103472 hasBestOaLocation W43831034721 @default.
- W4383103472 hasConcept C119857082 @default.
- W4383103472 hasConcept C123657996 @default.
- W4383103472 hasConcept C138885662 @default.
- W4383103472 hasConcept C142362112 @default.
- W4383103472 hasConcept C153349607 @default.
- W4383103472 hasConcept C154945302 @default.
- W4383103472 hasConcept C204321447 @default.
- W4383103472 hasConcept C22019652 @default.
- W4383103472 hasConcept C2776461190 @default.
- W4383103472 hasConcept C2777462759 @default.
- W4383103472 hasConcept C41008148 @default.
- W4383103472 hasConcept C41608201 @default.
- W4383103472 hasConcept C41895202 @default.
- W4383103472 hasConcept C50644808 @default.
- W4383103472 hasConcept C66402592 @default.
- W4383103472 hasConcept C90805587 @default.
- W4383103472 hasConcept C94124525 @default.
- W4383103472 hasConcept C95623464 @default.
- W4383103472 hasConceptScore W4383103472C119857082 @default.
- W4383103472 hasConceptScore W4383103472C123657996 @default.
- W4383103472 hasConceptScore W4383103472C138885662 @default.
- W4383103472 hasConceptScore W4383103472C142362112 @default.
- W4383103472 hasConceptScore W4383103472C153349607 @default.
- W4383103472 hasConceptScore W4383103472C154945302 @default.
- W4383103472 hasConceptScore W4383103472C204321447 @default.
- W4383103472 hasConceptScore W4383103472C22019652 @default.
- W4383103472 hasConceptScore W4383103472C2776461190 @default.
- W4383103472 hasConceptScore W4383103472C2777462759 @default.
- W4383103472 hasConceptScore W4383103472C41008148 @default.
- W4383103472 hasConceptScore W4383103472C41608201 @default.
- W4383103472 hasConceptScore W4383103472C41895202 @default.
- W4383103472 hasConceptScore W4383103472C50644808 @default.
- W4383103472 hasConceptScore W4383103472C66402592 @default.
- W4383103472 hasConceptScore W4383103472C90805587 @default.
- W4383103472 hasConceptScore W4383103472C94124525 @default.
- W4383103472 hasConceptScore W4383103472C95623464 @default.
- W4383103472 hasIssue "3" @default.
- W4383103472 hasLocation W43831034721 @default.
- W4383103472 hasOpenAccess W4383103472 @default.
- W4383103472 hasPrimaryLocation W43831034721 @default.
- W4383103472 hasRelatedWork W2335882425 @default.
- W4383103472 hasRelatedWork W2952874106 @default.
- W4383103472 hasRelatedWork W3036348210 @default.
- W4383103472 hasRelatedWork W3046869600 @default.
- W4383103472 hasRelatedWork W3096795283 @default.
- W4383103472 hasRelatedWork W4210823838 @default.
- W4383103472 hasRelatedWork W4312833533 @default.
- W4383103472 hasRelatedWork W4313247739 @default.
- W4383103472 hasRelatedWork W4313384562 @default.
- W4383103472 hasRelatedWork W4367548636 @default.
- W4383103472 hasVolume "13" @default.
- W4383103472 isParatext "false" @default.
- W4383103472 isRetracted "false" @default.
- W4383103472 workType "article" @default.