Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383104003> ?p ?o ?g. }
- W4383104003 abstract "Abstract The issue of modelling observations generated in matrix form over time is key in economics, finance and many domains of application. While it is common to model vectors of observations through standard vector time series analysis, original matrix-valued data often reflect different types of structures of time series observations which can be further exploited to model interdependencies. In this paper, we propose a novel matrix autoregressive model in a bilinear form which, while leading to a substantial dimensionality reduction and enhanced interpretability: (a) allows responses and potential covariates of interest to have different dimensions; (b) provides a suitable estimation procedure for matrix autoregression with lag structure; (c) facilitates the introduction of Bayesian estimators. We propose maximum likelihood and Bayesian estimation with Independent-Normal prior formulation, and study the theoretical properties of the estimators through simulated and real examples." @default.
- W4383104003 created "2023-07-05" @default.
- W4383104003 creator A5054626521 @default.
- W4383104003 creator A5068442023 @default.
- W4383104003 date "2023-07-04" @default.
- W4383104003 modified "2023-10-03" @default.
- W4383104003 title "Matrix autoregressive models: generalization and Bayesian estimation" @default.
- W4383104003 cites W115063971 @default.
- W4383104003 cites W1515333551 @default.
- W4383104003 cites W1532814032 @default.
- W4383104003 cites W1805728690 @default.
- W4383104003 cites W1869633147 @default.
- W4383104003 cites W1963826206 @default.
- W4383104003 cites W1966411627 @default.
- W4383104003 cites W1966921507 @default.
- W4383104003 cites W1969610664 @default.
- W4383104003 cites W1982652137 @default.
- W4383104003 cites W2024165284 @default.
- W4383104003 cites W2045577908 @default.
- W4383104003 cites W2056186894 @default.
- W4383104003 cites W2057990756 @default.
- W4383104003 cites W2073389244 @default.
- W4383104003 cites W2081531193 @default.
- W4383104003 cites W2083577057 @default.
- W4383104003 cites W2125942006 @default.
- W4383104003 cites W2136002544 @default.
- W4383104003 cites W2138806521 @default.
- W4383104003 cites W2142349107 @default.
- W4383104003 cites W2159706540 @default.
- W4383104003 cites W2167083368 @default.
- W4383104003 cites W2326822721 @default.
- W4383104003 cites W2521054267 @default.
- W4383104003 cites W2770380588 @default.
- W4383104003 cites W2792722624 @default.
- W4383104003 cites W2890823802 @default.
- W4383104003 cites W2911765434 @default.
- W4383104003 cites W2945537495 @default.
- W4383104003 cites W2947626232 @default.
- W4383104003 cites W2962777160 @default.
- W4383104003 cites W2964255370 @default.
- W4383104003 cites W2995646812 @default.
- W4383104003 cites W3022446978 @default.
- W4383104003 cites W3022527734 @default.
- W4383104003 cites W3081388776 @default.
- W4383104003 cites W3102581530 @default.
- W4383104003 cites W3104460407 @default.
- W4383104003 cites W3121573968 @default.
- W4383104003 cites W3123507112 @default.
- W4383104003 cites W3125070724 @default.
- W4383104003 cites W4200144857 @default.
- W4383104003 cites W4210650204 @default.
- W4383104003 doi "https://doi.org/10.1515/snde-2022-0093" @default.
- W4383104003 hasPublicationYear "2023" @default.
- W4383104003 type Work @default.
- W4383104003 citedByCount "1" @default.
- W4383104003 crossrefType "journal-article" @default.
- W4383104003 hasAuthorship W4383104003A5054626521 @default.
- W4383104003 hasAuthorship W4383104003A5068442023 @default.
- W4383104003 hasConcept C105795698 @default.
- W4383104003 hasConcept C106487976 @default.
- W4383104003 hasConcept C107673813 @default.
- W4383104003 hasConcept C134306372 @default.
- W4383104003 hasConcept C137703641 @default.
- W4383104003 hasConcept C143724316 @default.
- W4383104003 hasConcept C149782125 @default.
- W4383104003 hasConcept C151406439 @default.
- W4383104003 hasConcept C151730666 @default.
- W4383104003 hasConcept C154945302 @default.
- W4383104003 hasConcept C159877910 @default.
- W4383104003 hasConcept C159985019 @default.
- W4383104003 hasConcept C177148314 @default.
- W4383104003 hasConcept C185429906 @default.
- W4383104003 hasConcept C192562407 @default.
- W4383104003 hasConcept C194657046 @default.
- W4383104003 hasConcept C24338571 @default.
- W4383104003 hasConcept C2781067378 @default.
- W4383104003 hasConcept C33923547 @default.
- W4383104003 hasConcept C41008148 @default.
- W4383104003 hasConcept C86803240 @default.
- W4383104003 hasConceptScore W4383104003C105795698 @default.
- W4383104003 hasConceptScore W4383104003C106487976 @default.
- W4383104003 hasConceptScore W4383104003C107673813 @default.
- W4383104003 hasConceptScore W4383104003C134306372 @default.
- W4383104003 hasConceptScore W4383104003C137703641 @default.
- W4383104003 hasConceptScore W4383104003C143724316 @default.
- W4383104003 hasConceptScore W4383104003C149782125 @default.
- W4383104003 hasConceptScore W4383104003C151406439 @default.
- W4383104003 hasConceptScore W4383104003C151730666 @default.
- W4383104003 hasConceptScore W4383104003C154945302 @default.
- W4383104003 hasConceptScore W4383104003C159877910 @default.
- W4383104003 hasConceptScore W4383104003C159985019 @default.
- W4383104003 hasConceptScore W4383104003C177148314 @default.
- W4383104003 hasConceptScore W4383104003C185429906 @default.
- W4383104003 hasConceptScore W4383104003C192562407 @default.
- W4383104003 hasConceptScore W4383104003C194657046 @default.
- W4383104003 hasConceptScore W4383104003C24338571 @default.
- W4383104003 hasConceptScore W4383104003C2781067378 @default.
- W4383104003 hasConceptScore W4383104003C33923547 @default.
- W4383104003 hasConceptScore W4383104003C41008148 @default.
- W4383104003 hasConceptScore W4383104003C86803240 @default.