Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383107767> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4383107767 endingPage "372" @default.
- W4383107767 startingPage "368" @default.
- W4383107767 abstract "As the population increases, so do the number of patients getting admitted in hospitals. This generates an overwhelming amount of data within the electronic health records (EHRs) that is impossible to manage manually. This is where machine learning concepts come in handy. The ML algorithms for regression-classification have become increasingly popular within the healthcare sector. Especially for cardiovascular diseases (CVD). Estimation states that by 2030, over 23 million people will die from CVD each year. But, it is estimated that 90% of CVD is preventable. The on time recognition and diagnosis of heart failure from the pre-existing medical records is a way to do so. However, the EHRs are not particularly reliable when it comes to the comparison of structured and unstructured data. This is due to the use of colloquial language and possible existence of sparse content. To tackle this issue, the proposed system uses the KTI-RNN model for recognition of unstructured data and removal of sparse content, TF-IWF model to extract the keyword set, the LDA model to extract the topic word set, and finally, the GA-BiRNN model to identify heart failure from extensive medical texts. The GA-BiRNN model is made up of a bidirectional recurrent neural network model and its output layer embedded with global attention mechanism and gating mechanism." @default.
- W4383107767 created "2023-07-05" @default.
- W4383107767 creator A5029502126 @default.
- W4383107767 creator A5064778196 @default.
- W4383107767 creator A5082037255 @default.
- W4383107767 creator A5092397467 @default.
- W4383107767 creator A5092397468 @default.
- W4383107767 date "2023-06-01" @default.
- W4383107767 modified "2023-09-27" @default.
- W4383107767 title "A Survey on Medical Health Records and AI" @default.
- W4383107767 cites W1874746313 @default.
- W4383107767 cites W2250539671 @default.
- W4383107767 cites W2527776542 @default.
- W4383107767 cites W2757748513 @default.
- W4383107767 cites W2911462778 @default.
- W4383107767 cites W3083683925 @default.
- W4383107767 doi "https://doi.org/10.32628/cseit23903102" @default.
- W4383107767 hasPublicationYear "2023" @default.
- W4383107767 type Work @default.
- W4383107767 citedByCount "0" @default.
- W4383107767 crossrefType "journal-article" @default.
- W4383107767 hasAuthorship W4383107767A5029502126 @default.
- W4383107767 hasAuthorship W4383107767A5064778196 @default.
- W4383107767 hasAuthorship W4383107767A5082037255 @default.
- W4383107767 hasAuthorship W4383107767A5092397467 @default.
- W4383107767 hasAuthorship W4383107767A5092397468 @default.
- W4383107767 hasBestOaLocation W43831077671 @default.
- W4383107767 hasConcept C119857082 @default.
- W4383107767 hasConcept C126838900 @default.
- W4383107767 hasConcept C147168706 @default.
- W4383107767 hasConcept C154945302 @default.
- W4383107767 hasConcept C160735492 @default.
- W4383107767 hasConcept C162324750 @default.
- W4383107767 hasConcept C177264268 @default.
- W4383107767 hasConcept C195910791 @default.
- W4383107767 hasConcept C199360897 @default.
- W4383107767 hasConcept C2908647359 @default.
- W4383107767 hasConcept C3019952477 @default.
- W4383107767 hasConcept C41008148 @default.
- W4383107767 hasConcept C50522688 @default.
- W4383107767 hasConcept C50644808 @default.
- W4383107767 hasConcept C58489278 @default.
- W4383107767 hasConcept C71924100 @default.
- W4383107767 hasConcept C99454951 @default.
- W4383107767 hasConceptScore W4383107767C119857082 @default.
- W4383107767 hasConceptScore W4383107767C126838900 @default.
- W4383107767 hasConceptScore W4383107767C147168706 @default.
- W4383107767 hasConceptScore W4383107767C154945302 @default.
- W4383107767 hasConceptScore W4383107767C160735492 @default.
- W4383107767 hasConceptScore W4383107767C162324750 @default.
- W4383107767 hasConceptScore W4383107767C177264268 @default.
- W4383107767 hasConceptScore W4383107767C195910791 @default.
- W4383107767 hasConceptScore W4383107767C199360897 @default.
- W4383107767 hasConceptScore W4383107767C2908647359 @default.
- W4383107767 hasConceptScore W4383107767C3019952477 @default.
- W4383107767 hasConceptScore W4383107767C41008148 @default.
- W4383107767 hasConceptScore W4383107767C50522688 @default.
- W4383107767 hasConceptScore W4383107767C50644808 @default.
- W4383107767 hasConceptScore W4383107767C58489278 @default.
- W4383107767 hasConceptScore W4383107767C71924100 @default.
- W4383107767 hasConceptScore W4383107767C99454951 @default.
- W4383107767 hasLocation W43831077671 @default.
- W4383107767 hasOpenAccess W4383107767 @default.
- W4383107767 hasPrimaryLocation W43831077671 @default.
- W4383107767 hasRelatedWork W2793022090 @default.
- W4383107767 hasRelatedWork W2919358988 @default.
- W4383107767 hasRelatedWork W2966207284 @default.
- W4383107767 hasRelatedWork W4213142596 @default.
- W4383107767 hasRelatedWork W4281386417 @default.
- W4383107767 hasRelatedWork W4298168912 @default.
- W4383107767 hasRelatedWork W4327531511 @default.
- W4383107767 hasRelatedWork W4327831767 @default.
- W4383107767 hasRelatedWork W4366674482 @default.
- W4383107767 hasRelatedWork W1629725936 @default.
- W4383107767 isParatext "false" @default.
- W4383107767 isRetracted "false" @default.
- W4383107767 workType "article" @default.